The Single-Site Vanadyl Activation, Functionalization, and Re-oxidation Reaction Mechanism for Propane Oxidative Dehydrogenation on the Cubic V_4O_{10} Cluster

Mu-Jeng Cheng, Kimberly Chenoweth, Jonas Oxgaard, Adri van Duin and William A. Goddard, III*

Materials and Process Simulation Center (139-74)
California Institute of Technology, Pasadena, California 91125 USA

Abstract

Vanadyl oxide ($V=O$) sites are thought to play a role in a number of industrially important catalysts for activating saturated alkanes, but in no system is the mechanism for the activation, product formation, and re-oxidation steps established. In this paper we use quantum mechanical methods (B3LYP flavor of density functional theory) to examine the detailed mechanism for propane reacting with a V_4O_{10} cluster to model the catalytic oxidative dehydrogenation (ODH) of propane on the $V_2O_5(001)$ surface.

We here report the mechanism of the complete catalytic cycle, including the regeneration of the reduced catalyst using gaseous O_2. The rate-determining step is hydrogen abstraction by the vanadyl ($V=O$) group (in agreement with experiment) to form an iso-propyl radical that binds to an adjacent V-O-V site. Subsequently, this bound iso-propyl forms propene product by α-hydride elimination to form bound H_2O. We find that this H_2O (bound to a V^{III} site) is too stable to desorb unimolecularly. Instead, the desorption is induced by binding of gaseous O_2 to the V^{III} site, which dramatically decreases the coordination energy of H_2O from 37.8 to 12.9 kcal/mol. Further rearrangement of the O_2 molecule leads to formation of a cyclic VO_2 peroxide,
that activates the C-H bond of a second propane to form a second propene (with a lower reaction barrier). Desorption of this propene regenerates the original V_4O_{10} cluster.

We find that all reactions involve the single vanadyl oxygen ($V=O$), with the bridging oxygens ($V-O-V$) serving to stabilize the iso-propyl radical intermediate. We refer to this mechanism as the Single-Site Vanadyl Activation, Functionalization, and Re-oxidation mechanism (SS-VAFR). This SS-VAFR mechanism should be applicable to propane ODH on the supported vanadium oxide catalysts where only monovanadate (VO_4) species are present.