Thermoelectric Properties Modeling of Bi$_2$Te$_3$

Seungwon Lee and Paul von Allmen

Jet propulsion Laboratory, California Institute of Technology

Funded by DARPA PROM program
Overview

• Introduce EZTB a modeling tool for thermoelectric properties using a tight-binding model and the Boltzmann transport equation.

• Introduce the fitting process of tight-binding parameters to a first-principles band structure using a genetic algorithm.

• Present the accuracy of the fitting with the tight-binding parameters for Bi₂Te₃.

• Present the accuracy of the modeling tool with the thermoelectric properties of Bi₂Te₃.
EZTB: Thermoelectric Properties Modeling

Material Parameters: Electron and Lattice Structure

First principles electronic structure

First principles equations of state

Model Parameter Fitting

Force fields model

Tight binding model

Boltzmann transport equation

Electron contribution:
- S: Seebeck coefficient
- σ: Electrical conductivity
- κ_e: Thermal conductivity

Lattice contribution:
- κ_{ph}: Thermal conductivity

Figure of Merit: $ZT = \frac{S^2 \sigma T}{\kappa_e + \kappa_{ph}}$
Model Parameter Fitting

Material Parameters: Electron and Lattice Structure

First principles electronic structure

First principles equations of state

Model Parameter Fitting

Tight binding model

Force fields model

Boltzmann transport equation

Electron contribution:
- S: Seebeck coefficient
- σ: Electrical conductivity
- κ_e: Thermal conductivity

Lattice contribution:
- κ_{ph}: Thermal conductivity

Figure of Merit: $ZT = \frac{S^2 \sigma T}{\kappa_e + \kappa_{ph}}$
• Tight-binding model maps the electron Hamiltonian onto couplings between atomic orbitals.
• The coupling parameters are fitted to a first-principles band structure using a genetic algorithm.

\[H = \sum_i \varepsilon_i |i\rangle \langle i| + \sum_{ij} t_{ij} |i\rangle \langle j| \]

| Atomic Orbital: \(|i\rangle \) | Parameter: \(\varepsilon_i, t_{ij} \) | Band Structure |

Objective: Fit the tight-binding band structure to a first-principles band structure
A genetic algorithm is inspired by the natural selection and sexual reproduction process of living organisms.

The genetic algorithm is known to be efficient in finding a global optimum in a high-dimensional, multi-modal search space.
Some of the band structure values are more important than others.
- The highest conduction and the lowest valence bands are responsible for thermoelectric properties (10X).
- The location, energy, and effective mass of the band edge are critical (100X).

\[H = \sum_i \varepsilon_i |i\rangle\langle i| + \sum_{ij} t_{ij} |i\rangle\langle j| \]

| i ⟩: atomic orbital
| Band Structure

Objective: Fit the tight-binding band structure to a first-principles band structure
Bi$_2$Te$_3$

- Bi$_2$Te$_3$ is a narrow-gap semiconductor with the gap of ~160 meV.
- Bi$_2$Te$_3$ has a rhombohedral crystal structure with five atoms per unit cell.
- Bi$_2$Te$_3$ is the basic constituent of currently best thermoelectric materials.
- Bi$_2$Te$_3$/Sb$_2$Te$_3$ superlattices exhibit a high thermoelectric figure of merit: $ZT \approx 2.4$. [R. Venkatasubramanian, et al., Nature 413, 597 (2001)]
Bi$_2$Te$_3$ First-principles Band Structure

- Recently, a first-principles band structure is obtained with the screened-exchange local density approximation [Kim, Freeman, and Geller, PRB 72, 035205 (2005)].
- The band edges are located off the high symmetry lines and on the y-z mirror plane.

<table>
<thead>
<tr>
<th></th>
<th>sX-LDA</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CBE</td>
<td>VBE</td>
</tr>
<tr>
<td>E(eV)</td>
<td>0.154</td>
<td>0.000</td>
</tr>
<tr>
<td>m$_{xx}$</td>
<td>0.019</td>
<td>0.025</td>
</tr>
<tr>
<td>m$_{yy}$</td>
<td>0.125</td>
<td>0.263</td>
</tr>
<tr>
<td>m$_{zz}$</td>
<td>0.137</td>
<td>0.192</td>
</tr>
</tbody>
</table>

Bi$_2$Te$_3$ Tight-binding Band Structure

Tight-binding method with sp3d5s* orbitals, nearest-neighbor int., spin-orbit coupling.

- Tight-binding parameters are fitted to a recent screened-exchange LDA (sX-LDA) calculation [Kim, Freeman, and Geller, PRB 72, 035205 (2005)].
- Conduction and valence band edge parameters are fitted within 4% error.

![Graph showing band structure comparison between TB and sX-LDA models]

<table>
<thead>
<tr>
<th></th>
<th>TB CBE</th>
<th>TB VBE</th>
<th>sX-LDA CBE</th>
<th>sX-LDA VBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(eV)</td>
<td>0.159</td>
<td>0.000</td>
<td>0.154</td>
<td>0.000</td>
</tr>
<tr>
<td>m$_{xx}$</td>
<td>0.019</td>
<td>0.025</td>
<td>0.019</td>
<td>0.025</td>
</tr>
<tr>
<td>m$_{yy}$</td>
<td>0.125</td>
<td>0.262</td>
<td>0.125</td>
<td>0.263</td>
</tr>
<tr>
<td>m$_{zz}$</td>
<td>0.132</td>
<td>0.200</td>
<td>0.137</td>
<td>0.192</td>
</tr>
</tbody>
</table>
n-Doped Bi$_2$Te$_3$ Thermoelectric Properties

constant relaxation time = 2.2×10^{-14} s
experimental value κ_{ph} = 1.5 W m$^{-1}$K$^{-1}$

Experimental data from Thermoelectric refrigeration, H.J. Goldsmid (1964)
Summary

Current Work

- Developed a modeling tool for thermoelectric properties.
- Found the tight-binding parameters for Bi$_2$Te$_3$, which fit the first-principle band structures: the band edge characteristics within 4% error.
- Calculated the thermoelectric properties of Bi$_2$Te$_3$ with the tight-binding model and the Boltzmann transport equation.
- The resulting figure of merit is in good agreement with experiments.

Future Work

- Model the thermoelectric properties of Bi$_2$Te$_3$ quantum wires and wells.
- Optimize the Bi$_2$Te$_3$ nanostructure geometry to maximize the figure of merit.
- Fit tight-binding parameters for Sb$_2$Te$_3$.
- Calculate the thermoelectric properties of Bi$_2$Te$_3$/Sb$_2$Te$_3$ superlattice.
- Optimize the superlattice geometry to maximize the figure of merit.