Study Guide for Lecture 5: Consequences of Spin in Bonding

Dan Fisher
Oct 5, 2005

1 Summary

- We have discussed inversion and transposition symmetry for the H$_2$ molecule. Since inversion and transposition do not change the energy of the molecule, the spatial wavefunctions must be either symmetric or antisymmetric with respect to the operations.

- Spin is an additional coordinate that describes how electrons behave in a magnetic field.

- The Pauli Principle states that wavefunctions must be antisymmetric with respect to interchanging the spatial and spin coordinates of any two electrons. Therefore, a symmetric spatial combination must go with an antisymmetric spin combination, and vice versa.

- The antisymmetrizer is an operator that generates an antisymmetric wavefunction from a product of orbitals.

- Overlap of same spin orbitals explains the lack of bonding in He$_2$.

2 H$_2$ Symmetry

The Hamiltonian operator for H$_2$ is $\hat{H} = h(1) + h(2) + \frac{1}{r_{12}}$.

The Hamiltonian commutes with the inversion operator, \hat{I}, because all interparticle distances are preserved under inversion.

Consider the eigenstates of the Hamiltonian in the MO picture. For the H$_2^+$ molecule, our single electron orbitals are $\phi_g = l + r$ and $\phi_u = l - r$. We can make the H$_2$ molecule by putting two electrons in the ϕ_g orbital. This state is bonding and is symmetric under inversion and transposition.

There are two possibilities for the first excited state. We can put electron 1 in ϕ_g and electron 2 in ϕ_u, giving $\phi_g \phi_u$. We can also have $\phi_u \phi_g$. These states are not eigenstates of the transposition operator.

We can take linear combinations of these two states to get eigenstates of the transposition operator. The symmetric combination is $\phi_u \phi_g + \phi_g \phi_u$ and the antisymmetric combination is $\phi_u \phi_g - \phi_g \phi_u$. The state $\phi_u \phi_g - \phi_g \phi_u$ is antibonding and is antisymmetric under inversion and transposition.

In the VB picture, our ground state is $LR + RL$, which is bonding and symmetric under inversion and transposition. The first excited state is $LR - RL$, which is antibonding and antisymmetric under inversion and transposition.

3 Spin

In addition to its spatial coordinates, each electron has a spin coordinate, which describes how it behaves in a magnetic field. Possible spin values are up, or α, and down, or β.

Some possible spin combinations for two electrons are $\alpha \alpha$, $\alpha \beta$, $\beta \alpha$, and $\beta \beta$. Of these, $\alpha \beta$ and $\beta \alpha$ are not eigenfunctions of the transposition operator. In order to make eigenfunctions, we take symmetric and antisymmetric linear combinations to get $\alpha \beta + \beta \alpha$ and $\alpha \beta - \beta \alpha$.

1
\(\alpha \beta + \beta \alpha, \alpha \alpha, \) and \(\beta \beta \) all have \(S = 1 \). Since there are three of them, they are called a \textbf{triplet state}. \(\alpha \beta - \beta \alpha \) has \(S = 0 \) and is called the \textbf{singlet state}.

The \textbf{Pauli principle} states that all wavefunctions must be antisymmetric with respect to interchanging the spatial and spin coordinates of any two electrons. Therefore, a symmetric spatial combination must be accompanied by an antisymmetric spin combination, and an antisymmetric spatial combination must have a symmetric spin combination.

As we saw in the previous section, bonding states are symmetric with respect to transposition, so they must have a singlet spin combination. Antibonding states are antisymmetric in space, so they have triplet spin.

Consider two nonorthogonal orbitals, \(\langle a|b \rangle = s \). If these orbitals have a triplet spin combination, the spatial parts will have to get orthogonal to each other. Let \(\overline{b} = b - sa \). Then \(\langle a|\overline{b} \rangle = \langle a|b \rangle - s \langle a|a \rangle = 0 \). As we bring the orbitals closer together, their overlap increases, and the negative contribution to \(b \) increases. The orbital \(\overline{b} \) becomes steeper, which results in unfavorable kinetic energy and repulsion. Therefore, overlapping orbitals of the same spin will always be repulsive.

If the orbitals have a singlet spin combination, on the other hand, the spatial orbitals don’t have to change. They can combine to form a new orbital with a decreased gradient and more favorable KE.

4 \textbf{He}_2

Consider bringing two Helium atoms together to form a molecule analogous to \textbf{H}_2. Our VB ground state wavefunction would be \(L^2 R^2 + R^2 L^2 \).

We can see why this molecule doesn’t form when we use the antisymmetrizer to make a wavefunction to describe it. In the expression \(\forall (La)(L\beta)(Ra)(R\beta) \), we see that the orbitals \(L \) and \(R \) have triplet spin combinations. Therefore, the spatial orbitals will have to get orthogonal to each other as the atoms approach, which will lead to a repulsive interaction.

In the MO picture, we can consider adding two electrons to the \textbf{H}_2 molecule. These two electrons will have to go into the antibonding \(gu - ug \) orbital, leaving us with no net bonding.

The \textbf{He}_2+ molecule, however, will have only one electron in the antibonding orbital, so we will have a bond order of 1/2. This molecule will have a greater bond distance and less bond energy than \textbf{H}_2.

Some HF/6311G**++ results: \textbf{He}_2+ is unbound because it dissociates into two \textbf{He} ions, which would repel each other. There is a barrier and a local minimum at 0.69 \, \text{Å}, but it is unlikely that this molecule would ever form.

5 \textbf{Suggested Reading}

- Spin - 4.1, 4.2, 4.3, 4-A in the Goddard Book

- Spin Angular Momentum, Pauli Principle, Slater Determinants - McQuarrie p. 298-307