Nature of the Chemical Bond

Goal: To predict (without work) properties and structures of chemicals and materials all based on the rigorous principles of Quantum Mechanics (QM)

Why is QM so important?

→ It is why we exist!

In a Classical world:

Consider a proton and an electron at separation \(R \)

\[\begin{array}{c}
\text{+e} \\
\text{-e} \\
\hline
\text{R}
\end{array} \]

The **CLASSICAL** energy components of the total energy is

\[\text{Energy Terms: Potential Energy + Kinetic Energy = Total Energy} \]

\[\hat{V} + \hat{T} = E \]

Classical Energy:

\[\frac{-e^2}{R} + \frac{1}{2} m v^2 = E \]

The lowest energy of a system constitutes its “best” energy

\[\text{the most negative} \]

The minimum value of \(\hat{V} \) is \(-\infty \) at \(R = 0 \)

\[\hat{T} \geq 0 \text{ at } v = 0 \]

\[\Box \]
If $R=0$ and $v=0$, the e^- would be at the nucleus and no atoms would exist!

Luckily, QM explains atoms and bonds.

QM points

1. The wavefunction, Ψ, contains all the information we need from an electron. The wavefunction is a function of space and time: $\Psi(x,y,z,t)$

2. The probability density of a wavefunction is

$$P(x,y,z,t) = |\Psi|^2 = \Psi^\ast \Psi$$

(Ψ^\ast is the complex conjugate of Ψ)

In order to be relevant, the wavefunction must be normalized so that

$$\int P(x,y,z,t) dx = \langle \Psi | \Psi \rangle = 1$$

3. The concept of superposition allows us to make good wavefunctions out of other good wavefunctions.

\[\Psi_{\text{new}} = \Psi_{\text{old}} + \Psi_{\text{good}} \]

Also a good wavefunction.
4 - The Hamiltonian determines the time-evolution of \(\Psi \)

\[
\frac{\partial \Psi}{\partial t} = \frac{-i}{\hbar} H \Psi
\]

5 - Phase factors don't change the state that a wavefunction represents.

\[
\langle \Psi, e^{i\alpha} \Psi \rangle = |\Psi|^2 = \Psi^\dagger \Psi = \langle \Psi | \Psi \rangle
\]

6 - If \(H \) is independent of time, then \(\Psi(x,y,z,t) = e^{-i\lambda t} \Phi(x,y,z) \)

\[
\frac{\partial}{\partial t} \Psi = -i\alpha \Psi \quad \text{(an eigenfunction!)}
\]

So \(\hat{H} \Psi = E \Psi \), the Time-Independent Schrodinger Equation.

7 - Since \(\hat{H} \Psi = E \Psi \),

\[
E = \langle \Psi | \hat{H} | \Psi \rangle
\]

and for an approximate wavefunction \(\Psi_n \)

\[
\langle E \rangle = \frac{\langle \Psi_n | \hat{H} | \Psi_n \rangle}{\langle \Psi_n | \Psi_n \rangle} \geq E_{\text{exact}}
\]

(3)
Since \(\hat{H} = \hat{T} + \hat{V} \)

\[E = \langle \psi | \hat{H} | \psi \rangle = \langle \psi | \hat{T} | \psi \rangle + \langle \psi | \hat{V} | \psi \rangle \]

\[\hat{T} = \frac{\hat{p}^2}{2m} \]

\[\hat{V} = -\frac{\hbar^2}{2m} \nabla^2 \]

\[E = \langle \psi | \hat{T} | \psi \rangle + \langle \psi | \hat{V} | \psi \rangle \]

\[\hat{T} = \frac{\hbar^2}{2m} \nabla^2 \]

\[E = \langle \psi | \hat{T} | \psi \rangle + \langle \psi | \hat{V} | \psi \rangle \]

\[\hat{V} = -\frac{\hbar^2}{2m} \nabla^2 \]

\[E = \langle \psi | \hat{T} | \psi \rangle + \langle \psi | \hat{V} | \psi \rangle \]

Interpretation:

\[KE = \langle \psi | \hat{T} | \psi \rangle \]

\[KE = \frac{\hbar^2}{2m} \langle \psi | \nabla^2 | \psi \rangle \]

Unlike in Classical Mech., BOTH \(T \) \& \(V \) are directly related via the wavefunction.
Examples of wavefunctions

\[\Psi_C, \quad \Psi_L, \quad \Psi_S \]

\[R_C < R_L < R_S \]

\[\text{best } V \approx \Psi_C \]
\[\text{worst } R \approx \Psi_S \]

\[\text{worst } V \approx \Psi_L \]

\[\text{best } T \approx \Psi_S \]

\[E = T + V \]
\[= \frac{k^2}{2m} \left(\frac{\partial^2}{\partial x^2} \right) - \frac{e^2}{r} \]

Which \(\Psi \) has best \(V, T \)?

- KE depends on smoothness of \(\Psi \); smoother is better
 (recall \(KE \) is related to gradient of \(\Psi \))

- PE depends on average charge density; more compact is better
 (we can’t determine which \(\Psi \) is best unless we know both \(T \) and \(V \)’s dependence on \(R \))

\[V = \frac{-e}{r} \rightarrow \frac{1}{r} \text{ relation!} \]

\[T = \frac{k^2}{2m} \left(\frac{\partial^2}{\partial x^2} \right) \]
\[\approx \frac{k^2}{2m} \left(\frac{1}{R^2} \right) \]

\[\approx \frac{1}{R} \text{ relation!} \]
The higher order of T dominates.

$E = H + V$

$= \frac{\hbar^2}{2m} \frac{1}{R^2} - \frac{e^2}{R}$

$\frac{\Delta E}{\Delta R} = \frac{\hbar^2}{m e^2} \equiv a_o \quad \text{(the Bohr radius)}$

$= 0.529 \text{Å}$

At $a_o = R$, $E = \frac{\hbar^2}{2m a_o} - \frac{e^2}{a_o} = -13.6 \text{ eV}$

$\frac{a^2}{a_o} = 1 \quad E_k = 27.2 \text{ eV} = 627.5 \text{ kcal/mol}$

So KE is what keeps electrons from falling into the nucleus!
Application:
- Bonding in H₂⁺

\[\Phi_{\text{left}} \quad \Phi_{\text{right}} \]

H is on left side, H⁺ is on right.
There is one e⁻, and it's on H.

e⁻ is on right side

Also recall superposition. \(\Phi_{\text{left}}, \Phi_{\text{right}} \) are both good wave functions.

So also:

\[\Phi_{\text{left}} + \Phi_{\text{right}} \]
and

\[\Phi_{\text{left}} - \Phi_{\text{right}} \]

Higher e⁻ density far from nuclei means worse PE⁻.

But gradient for \(\Phi_{\text{left}} + \Phi_{\text{right}} \) is smoothest, so best KE.
Does \(\text{H}_2^+ \) remain bound?

Look at \(T, V \) for inter-nuclear distance

- \(V \) (as nuclei separate, repulsion decreases)
- \(T \) depends on \(\nabla \Phi \) change

\(\Phi_b \) nuclei on top of each other

\(R_a < R_b < R_c \)

Optimal region (note no change in \(\nabla \Phi \))

\(R_a < R_b < R_c \)

(Optimal distance is \(\approx 2a_0 \))

\(\rightarrow \) Yes! \(\text{H}_2^+ \) is bound

Nodal Theorem: A wavefunction without nodes is of lower energy.

\(\Phi_e - \Phi_r \rightarrow \) smoother

\(\Phi_e - \Phi_r \rightarrow \) less smooth