Simultaneous Eigenfunctions
- commuting observables
- linear combinations of degenerate states
- symmetry + spin

Pauli Principle

He-2 repulsion - MO vs VB picture

We use observables to define wavefunctions.

Complete set of commuting observables (CSCO)

\[\psi_1, \psi_2 \]
\[\psi_3, \psi_4 \]

\[\hat{H} \]
\[\hat{I} \]

Different energetics

Different symmetry w.r.t. inversion.

These four wavefunctions can be completely characterized by specifying their energy and symmetry w.r.t. inversion (\(S\) or \(U\)).

Ex: H atom \([\hat{H}, L^2, L_z, \text{spin}]\)

A wavefunction is specified by its eigenvalues for these operators - \(\psi_{\text{eigen}}\).
we must pick our operators so that we can have eigenfunctions of all of them simultaneously.
For this to be possible, our operators must commute. $\hat{A}\hat{B} = \hat{B}\hat{A}$ or $[A,B] = 0$.

Simple case - all eigenvalues are distinct, no degenerate states.

If φ is an eigenfunction of \hat{A} and \hat{B} and \hat{A} commute, then

$\hat{A}\varphi = \lambda\varphi \rightarrow \hat{B}\hat{A}\varphi = \hat{B}\lambda\varphi$
$\hat{A}(\hat{B}\varphi) = \lambda(\hat{B}\varphi)$

Since there $\hat{B}\varphi = b\varphi$

are no degenerate states, $\hat{B}\varphi$ can only differ from φ by a multiplicative constant. So φ is also an eigenfunction of \hat{B}.

If there are degenerate eigenstates, φ_1, φ_2 at $\hat{A}\varphi_1 = \lambda\varphi_1$ and $\hat{A}\varphi_2 = \lambda\varphi_2$.

Then any linear combination of φ_1 and φ_2 is also an eigenstate with eigenvalue λ.

$\hat{A}(a\varphi_1 + b\varphi_2) = \lambda(a\varphi_1 + b\varphi_2)$
which combinations are eigenfunctions of \hat{B}? out of n degenerate states, we can make n eigenfunctions of \hat{B}.

\[\hat{H} = h_1 + h_2 + \frac{1}{\sqrt{2}} \]

\[\text{ignore this term for now} \]

\hat{I} inversion operator.

\hat{H} is invariant to inversion because all distances stay the same.

\[\hat{I} (\hat{H}(\vec{r}) \phi(\vec{r})) = \hat{H}(\vec{r}) \phi(-\vec{r}) \]

\[= \hat{H}(\vec{r}) \hat{I} \phi(\vec{r}) \]

so $\hat{H} \hat{I} = \hat{I} \hat{H}$, these operators commute.

Eigenvalues of \hat{I} are $\pm 1, 0$ or 0.

Eigenstates of \hat{H}:

MO wavefunctions

MO products of $1e^-$ wavefunctions

$\phi_g \rightarrow \{ \}$ from H_2^+

$\phi_u \rightarrow \{ \}$

$\hat{H} : 2E_g$

$\hat{I} : +1$

$\hat{I} : E_g + E_u$

$H: N/4$
The u_g and u_u wave functions are not eigenstates of \hat{I}. We can take linear combinations to get eigenstates.

These are now eigenfunctions of both \hat{H} and \hat{I}. If we put the $1/r_2$ term back into \hat{H}, we see that the u_g-u_u state will have better energy because it has a nodal plane along the $\vec{r}_1 = \vec{r}_2$ line.
we have spin operators s_x, s_y, s_z.

They do not commute with each other. They do commute with $s^2 = s_x^2 + s_y^2 + s_z^2$.

We choose to specify the eigenvalues of s^2 and s_z. $[s^2, s_z] = 0$.

Eigenfunctions are α and β.

$$s^2 \{ \alpha \} = \frac{1}{2} (\frac{1}{2} + 1) \{ \alpha \}$$

$$s^2 \{ \beta \} = \frac{1}{2} \{ \alpha \}$$

$s^2 = \frac{1}{2}$, $m_{s^2} = \frac{1}{2}$.

Multiple Electrons

We can define s^2, s_z operators for multiple electrons.

s_z eigenvalues just add, so multiplying α's and β's gives an eigenfunction of s_z.

Can combine s_z eigenfunctions to make an eigenfunction of s^2.

$$s^2 = s_+ s_- - s_z^2 + s_z^2$$

$s_+(\beta\beta) = \alpha \beta + \beta \alpha$

$s_-(\beta\alpha) = \beta\beta$.
Good \(s^2 \) wave functions

\[
\begin{align*}
\alpha \alpha & \quad s = \frac{3}{2} \\
\alpha \beta - \beta \alpha & \quad s = 0 \\
(\alpha \beta - \beta \alpha) \beta & \quad s = \frac{1}{2}
\end{align*}
\]

B90

\[
\alpha \beta \\
(\alpha \beta + \beta \alpha) \beta
\]

2e'-s

\(\gamma \): Transposition operator - interchanges 2 e'-s.

\[[\gamma, s_z] = [\gamma, s^2] = 0. \]

Good 2 electron spin functions must be eigenfunctions of \(\gamma \).

\[
\begin{array}{ccc}
\alpha \alpha & \gamma & 1 \\
\alpha \beta & 0 & \frac{1}{\sqrt{2}} \\
\beta \alpha & 0 & \frac{1}{\sqrt{2}} \\
\beta \beta & -1 & 1
\end{array}
\]

Use linear combinations:

\[
\begin{array}{ccc}
\alpha \alpha & s_\zeta & \frac{1}{\sqrt{2}} \\
\beta \beta & -1 & 1 \\
\alpha \beta + \beta \alpha & 0 & 1
\end{array}
\]

\[s = 1 \text{ triplet} \]

\[
\begin{array}{ccc}
\alpha \beta - \beta \alpha & 0 & -1 \\
\alpha \beta + \beta \alpha & 0 & 1
\end{array}
\]

\[s = 0 \text{ singlet} \]