next up previous
Next: About this document ... Up: eFF summary Previous: eFF3: exchange and correlation


Su, J. T. and Goddard, W. A. III, 2007. Excited electron dynamics modeling of warm dense matter. Phys. Rev. Lett. 99:185003.

Heller, E. J. 1975. Time-dependent approach to semiclassical dynamics. J. Chem. Phys. 62(4):1544-1555.

Feldmeier, H., Schnack, J. 2000. Molecular dynamics for fermions. Rev. Mod. Phys. 72(3):655-688.

Dorso, C., Duarte, S., Randrup, J. 1987. Classical simulation of the fermi gas. Phys. Lett. B. 188(3):287-294.

Dorso, C., Radnrup, J. 1988. Classical simulation of nuclear systems. Phys. Lett. B. 215(4):611-616.

Boal, D. H., Glosli, J. N. 1988. Quasiparticle model for nuclear dynamics studies: ground-state properties. Phys. Rev. C. 38(4):1870-1878.

Boal, D. H., Glosli, J. N. 1988. Quasiparticle model for nuclear reaction studies: quasiparticle dynamics. Phys. Rev. C. 38(6):2621-2629.

Maruyama, T., Ohnishi, A., Horiuchi, H. 1992. Evolution of reaction mechanisms in the light heavy-ion system. Phys. Rev. C. 45(5):2355-2368.

Wilets, L., Henley, E. M., Kraft, M., Mackellar, A. D. 1977. Classical many-body model for heavy-ion collisions incorporating the Pauli principle. Nuc. Phys. A282:341-350.

Hansen, J. P., McDonald, I. R. 1981. Microscopic simulation of a strongly coupled hydrogen plasma. Phys. Rev. A. 23(4):2041-2059.

Klakow, D., Toepffer, C., Reinhard, P.-G. 1994. Semiclassical molecular dynamics for strongly coupled Coulomb systems. J. Chem. Phys. 101(12):10766-10774.

Knaup, M., Reinhard, P-G., Toepffer, C., Zwicknagel, G. 2003. Wave packet molecular dynamics simulations of warm dense hydrogen. J. Phys. A: Math. Gen. 36:6165-6171.

Kirschbaum, C. L., Wilets, L. 1980. Classical many-body model for atomic collisions incorporating the Heisenberg and Pauli principles. Phys. Rev. A. 21(3):834-841.

Cohen, J. S. 1998. Extension of quasiclassical effective Hamiltonian structure of atoms through Z = 94. Phys. Rev. A. 57(6):4964-4966.

Beck, W. A., Wilets, L. 1997. Semiclassical description of proton stopping by atomic and molecular targets. Phys. Rev. A. 55(4):2821-2829.

Frost, A. A. 1967. Floating spherical gaussian orbital model of molecular structure. I. Computational procedure. LiH as an example. J. Chem. Phys. 47:3707-3713. Seven other papers in this series available; see also references by Pakiari A. H. (fixing water geometry and lone pairs), Walther, P. and Ratner, M. (pseudopotentials), Bartlett, R. (use as correlating orbitals), Borisov, Y. (density functional theory), Sales, K. (different oribtals for different spins), Ray, N. K. (organometallics), Linnett, J. W. (solving coalesence problem), and Lu, S.-L. (use as starting wavefunction for quantum Monte Carlo).

Doltsinis, N. L. 2002. Nonadiabatic dynamics: mean-field and surface hopping. In Quantum Simulations of complex many-body systems: from theory to algorithms. Grotendorst, J., Marx, D., Muramatsu, A. (Eds.) 10:377-397.

Tully, J. C. 1998. Mixed quantum-classical dynamics. Faraday Discuss. 110:407-419.

Kolos, W. and Wolniewicz, L. 1965. Potential energy curves for the X $ ^{1}\Sigma_{g}^{+}$, b $ ^{3}\Sigma_{u}^{+}$, and C $ ^{1}\Pi_{u}$ state of the hydrogen molecule. J. Chem. Phys. 43:2429-2441.

Diedrich, D. and Anderson, J. B. 1994. Exact quantum Monte Carlo calculations of the potential energy surface for the reaction $ \mathrm{H + H_{2} \rightarrow H_{2} + H}$. J. Chem. Phys. 100, 8089-8095.

Boothroyd, A. I. et al. 2001. An accurate analytic $ \mathrm{H_{4}}$ potential energy surface. J. Chem. Phys. 116, 666-689.

Bieri, G., Burger, F., Heilbronner, E., Maier, J. P. 1977. Valence ionization energies of hydrocarbons. Helv. Chim. Acta. 60(7):2213-2233.

J. G. Hamilton and W. E. Palke, J. Am. Chem. Soc. 115, 4159 (1993).

Wigner, E. 1934. On the interaction of electrons in metals. Phys. Rev. 46:1002-1011.

Ceperley, D. M., Alder, B. J. 1980. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45(7):566-569.

Perdew, J. P., Wang, Y. 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 45:13244-13249.

Iversen, B. B., Larsen, F. K., Souhassou, M. and Takata, M. 1995. Experimental evidence for the existence of non-nuclear maxima in the electron-density distribution of metallic beryllium. A comparative study of the maximum entropy method and the multipole refinement method. Acta Cryst. B51:580.

Chou, M. Y., Lam, P. K. and Cohen, M. L. 1983. Ab initio study of structural and electronic properties of beryllium. Phys. Rev. B, 28:4179.

Blaha, P. and Schwarz, K. 1987. A full-potential LAPW study of structural and electronic properties of beryllium. J. Phys. F: Met. Phys., 17:899.

Han S. S. et al, 2005. Optimization and application of lithium parameters for the reactive force field, ReaxFF. J. Phys. Chem. A, 109:4575.

Li, M. and Goddard, W. A. III, 1993. Phenomenological many-body potentials from the interstitial electron model. I. Dynamics properties of metals. J. Chem. Phys. 98:7995.

Tarascon, J.-M. and Armand, M. 2001. Issues and challenges facing rechargable lithium batteries. Nature. 414:359-367.

McAdon, M. H. and Goddard, W. A. III, 1987. Generalized valence bond studies of metallic bonding: naked clusters and applications to bulk metals. J. Phys. Chem. 91:2607-2626.

Van Horn, H. M., 1991. Dense astrophysical plasmas. Science 252:384.

Matzen, M. K. et al, 2005. Pulsed-power-driven high energy density physics and inertial confinement fusion research. Phys. of Plasmas 12:055503.

Weir, S. T., Mitchell, A. C., Nellis, W. J., 1996. Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett. 76:1860.

Loubeyre, P. et al., 1996. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383:702.

Saumon, D. and Chabrier, G., 1989. Fluid hydrogen at high density: The plasma phase transition. Phys. Rev. Lett. 62:2397.

Militzer, B., 2002. Path integral Monte Carlo simulations of hot dense hydrogen. Ph.D. thesis, University of Illinois at UC.

Militzer, B. and Ceperley, D. M., 2000. Path integral Monte Carlo calculation of the deuterium Hugoniot. Phys. Rev. Lett. 85:1890.

Nellis, W. J. et al., 1983. Equation of state data for molecular hydrogen and deuterium at shock pressures in the range 2-76 GPa (20-760 kbar). J. Chem. Phys. 79:1480.

Knudson, M. D. et al., 2003. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. Phys. Rev. Lett. 90:35505.

Boriskov, G. V. et al., 2005. Shock compression of liquid deuterium up to 109 GPa. Phys. Rev. B. 71:92104.

Collins, G. W. et al., 1998. Measurements of the equation of state of deuterium at the fluid insulator-metal transition Science 281:1178.

Ramsier, R. D. et al., 1991. Electron stimulated desorption - principles and applications. Surf. Sci. Rep. 12:243.

Knotek, M. L. and Feibelman, P. J. 1978. Ion desorption by core-hole Auger decay. Phys. Rev. Lett. 40:964.

Jennison, D. R. et al., 1982. Localized Auger final states in covalent systems. Phys. Rev. B. 25:1384.

Hoffman, A. and Laikhtman, A., 2006. Photon stimulated desorption of hydrogen from diamond surfaces via core-level excitations: fundamental processes and applications to surface studies J. Phys.: Condens. Matter 18:S1517.

McDowell, H. K., Porter, R. N. 1977. Reduced Green's functions and coupled perturbed Hartree-Fock calculations. II. Application to the static dipole polarizability of the helium isoelectronic sequence. J. Chem. Phys. 66(11):4725-4735.

Gell-Mann, M., Brueckner, K. A. 1957. Correlation energy of an electron gas at high density. Phys. Rev. 106(2):364-368.

Veillard, A., Clementi, E. 1968. Correlation energy in atomic systems. V. Degeneracy effects for the second-row atoms. J. Chem. Phys. 49(5):2415-2421.

Perdew, J. P., McMullen, E. R., Zunger, A. 1981. Density-functional theory of the correlation energy in atoms and ions: a simple analytic model and a challenge. Phys. Rev. A. 23(6):2785-2789.

Mattsson, A. E. 2002. Density functional theory: in pursuit of the ``divine'' functional. Science. 298:759-760.

Julius 2008-04-28