next up previous contents
Next: Development of an electron Up: An electron force field Previous: Appendix B: Adiabatic excited   Contents

Bibliography

5
Heller, E. J. 1975. Time-dependent approach to semiclassical dynamics. J. Chem. Phys. 62(4):1544-1555.

16
Klakow, D., Toepffer, C., Reinhard, P.-G. 1994. Semiclassical molecular dynamics for strongly coupled Coulomb systems. J. Chem. Phys. 101(12):10766-10774.

3
Singer, K. and Smith, W. 1986. Semiclassical many-particle dynamics with gaussian wave packets. Mol. Phys. 57(4):761-775.

4
Born, M. and Oppenheimer, M. 1927. On the quantum theory of molecules. Annalen der Physik. 84:457-484.

5
Feynman, R. P. 1939. Forces in molecules. Phys. Rev. 56:340-343.

6
Pulay, P. 1969. Ab initio calculation of force constants and equlibrium geometries in polyatomic molecules. I. Theory. Mol. Phys. 17(2):197-204.

7
Goddard, W. A. III. 1968. Improved quantum theory of many-electron systems. IV. Properties of GF wavefunctions. J. Chem. Phys. 48(12):5337-5347.

8
Barnett, R. N. and Landman, U. 1993. Born-Oppenheimer molecular-dynamics simulations of finite systems: structure and dynamics of $ \mathrm{(H_{2}O)_{2}}$. Phys. Rev. B 48(4):2081-2097.

9
Car, R. and Parrinello, M. 1985. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55(22):2471-2474.

10
Goedecker, S. 1999. Linear scaling electronic structure methods. Rev. Mod. Phys. 71(4):1085-1123.

3
Tuckerman, M. E. 2002. Ab initio molecular dynamics: basic concepts, current trends and novel applications. J. Phys.: Condens. Matter. 14:R1297-R1355.

12
Allinger, N. L. 1977. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing $ V_{1}$ and $ V_{2}$ torsional terms. J. Am. Chem. Soc. 99(25):8127-8134.

1
Mayo, S. L., Olafson, B. D., Goddard, W. A. III. 1990. Dreiding: a generic force field for molecular simulations. J. Phys. Chem. 94(26):8897-8909.

2
van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W. A. III. 2001. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A. 105:9396-9409.

15
Castonguay, L. A. and Rappe, A. K. 1992. Ziegler-Natta catalysis: A theoretical study of the isotactic polymerization of propylene. J. Am. Chem. Soc. 114(14):5832-5842.

16
Nielson, K. D., van Duin, A. C. T., Oxgaard, J., Deng, W.-Q., Goddard, W. A. III. 2005. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A. 109(3):493-499.

17
Karplus, M. and Petsko, G. A. 1990. Molecular dynamics simulations in biology. Nature. 347:631-639.

18
Verlet, L. 1967. Computer ``experiments'' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Review. 159(1):98-103.

19
Holst, M. and Saied, F. 1993. Multigrid solution of the Poisson-Boltzmann equation. J. Comp. Chem. 14(1):105-113.

20
Darden, T., York, D., Pedersen, L. 1993. Particle mesh Ewald: an $ N \log N$ method for Ewald sums in large systems. J. Chem. Phys. 12:10089-10092.

21
Mulliken, R. S. 1965. ``... the more accurate the calculations became, the more the concepts tended to vanish into thin air.'' J. Chem. Phys. 43:S2.

22
Liboff, R. L. Quantum mechanics (Holden-Day, San Francisco, 1980).

23
Kubo, R. 1957. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan 12(6):570-586.

24
Green, M. S. 1954. Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22(3):398-413.

25
Landau, L. 1957. The theory of a fermi liquid. Soviet Physics JETP. 3:920-925.

26
Doltsinis, N. L. 2002. Nonadiabatic dynamics: mean-field and surface hopping. In Quantum Simulations of complex many-body systems: from theory to algorithms. Grotendorst, J., Marx, D., Muramatsu, A. (Eds.) 10:377-397.

27
Tully, J. C. 1998. Mixed quantum-classical dynamics. Faraday Discuss. 110:407-419.

28
Tully, J. C. 1990. Molecular dynamics with electronic transitions. J. Chem. Phys. 93(2) 1061-1071.

29
Burke, K., Werschnik, J., Gross, E. K. U. 2005. Time-dependent density functional theory: past, present, and future. J. Chem. Phys. 123:062206-1 to 062206-9.

30
Petersilka, M., Gossmann, U. J., Gross, E. K. U. 1995. Excitation energies from time-dependent density functional theory. Phys. Rev. Lett. 76:1212-1215.

31
Wassermann, A. and Burke, K. 2005. Rydberg transition frequencies from the local density approximation. Phys. Rev. Lett. 95:163006-1 to 163006-4.

32
Dion, M., Rydberg, H., Schroder, E., Langreth, D. C., Lundqvist, B. I. 2004. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92(24):246401-1 to 246401-4.

33
Castro, A., Marques, M. A. L., Alonso, J. A., Bertsch, G. F., Rubio, A. 2004. Excited states dynamics in time-dependent density functional theory. Eur. Phys. J. D 28:211-218.

34
Kunert, T., Grossmann, F., Schmidt, R. 2005. Nonadibatic dynamics of ethylene in femtosecond laser pulses. Phys. Rev. A. 72:023422-1 to 023422-6.

35
Lindenblatt, M. and Pehlke, E. 2006. Ab initio simulation of the spin transition during chemisorption: H/Al(111). Phys. Rev. Lett. 97:216101-1 to 216101-4.

36
Reynolds, P. J., Ceperley, D. M., Alder, B. J., Lester, W. A., Jr. 1982. Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys. 77(11):5593-5603.

37
Pollock, E. L. and Ceperley, D. M. 1984. Simulation of quantum many-body systems by path-integral methods. Phys. Rev. B. 30(5):2555-2568.

38
Knaup, M., Reinhard, P.-G., Toepffer, C. 2001. Wave packet molecular dynamics simulations of deuterium in the region of laser shock-wave experiments. Contrib. Plasma. Phys. 41(2-3):159-162.

39
Thaller, B. 2000. Visual quantum mechanics (Springer-Verlag).

40
Boys, S. F. 1950. Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system. Proc. Royal. Soc. London. A. 200(1063):542-554.

41
Dreuw, A. and Head-Gordon, M. 2005. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 105:4009-4037.

42
Fitzgerald, G. and Schaefer, H. F. III. 1985. Analytic energy derivative methods for excited singlet states of the same symmetry as the electronic ground state. J. Chem. Phys. 83(3):1162-1167.

43
Ziegler, T., Rauk, A., Baerends, E. J. 1977. On the calculation of multiplet energies by the Hartree-Fock-Slater method. Theor. Chem. Acc. 43(3):261-271.

44
Laundau, L. and Lifshitz, E. M. 1977. Quantum mechanics: volume 3 (Butterworth-Heinemann).

45
Worth, G. and Cederbaum, L. S. 2004. Beyond Born-Oppenheimer: molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55:127-158.

11
Hansen, J. P., McDonald, I. R. 1981. Microscopic simulation of a strongly coupled hydrogen plasma. Phys. Rev. A. 23(4):2041-2059.

14
Boal, D. H., Glosli, J. N. 1988. Quasiparticle model for nuclear dynamics studies: ground-state properties. Phys. Rev. C. 38(4):1870-1878.

15
Boal, D. H., Glosli, J. N. 1988. Quasiparticle model for nuclear reaction studies: quasiparticle dynamics. Phys. Rev. C. 38(6):2621-2629.

17
Feldmeier, H., Schnack, J. 2000. Molecular dynamics for fermions. Rev. Mod. Phys. 72(3):655-688.

18
Maruyama, T., Ohnishi, A., Horiuchi, H. 1992. Evolution of reaction mechanisms in the light heavy-ion system. Phys. Rev. C. 45(5):2355-2368.

19
Beck, W. A., Wilets, L. 1997. Semiclassical description of proton stopping by atomic and molecular targets. Phys. Rev. A. 55(4):2821-2829.

8
Frost, A. A. 1967. Floating spherical gaussian orbital model of molecular structure. I. Computational procedure. LiH as an example. J. Chem. Phys. 47:3707-3713.



Julius 2008-04-29