next up previous contents
Next: Development of an electron Up: An electron force field Previous: Appendix C: Hartree-Fock orbital   Contents

Bibliography

1
Mayo, S. L., Olafson, B. D., Goddard, W. A. III. 1990. Dreiding: a generic force field for molecular simulations. J. Phys. Chem. 94(26):8897-8909.

2
van Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard, W. A. III. 2001. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A. 105:9396-9409.

3
Tuckerman, M. E. 2002. Ab initio molecular dynamics: basic concepts, current trends and novel applications. J. Phys.: Condens. Matter. 14:R1297-R1355.

4
Hehre, W. J. 1976. Ab initio molecular orbital theory. Acc. Chem. Res. 9(11):399-406.

5
Heller, E. J. 1975. Time-dependent approach to semiclassical dynamics. J. Chem. Phys. 62(4):1544-1555.

6
Lee, S-Y., Heller, E. J. 1982. Exact time-dependent wave packet propagation: application to the photodissociation of methyl iodide. J. Chem. Phys. 76(6):3035-3044.

7
Henriksen, N. E., Heller, E. J. 1989. Quantum dynamics for vibrational and rotational degrees of freedom using Gaussian wave packets: application to the three-dimensional photodissociation dynamics of ICN. J. Chem. Phys. 91(8):4700-4713.

8
Frost, A. A. 1967. Floating spherical gaussian orbital model of molecular structure. I. Computational procedure. LiH as an example. J. Chem. Phys. 47:3707-3713. Seven other papers in this series available; see also references by Pakiari A. H. (fixing water geometry and lone pairs), Walther, P. and Ratner, M. (pseudopotentials), Bartlett, R. (use as correlating orbitals), Borisov, Y. (density functional theory), Sales, K. (different oribtals for different spins), Ray, N. K. (organometallics), Linnett, J. W. (solving coalesence problem), and Lu, S.-L. (use as starting wavefunction for quantum Monte Carlo).

9
Wilets, L., Henley, E. M., Kraft, M., Mackellar, A. D. 1977. Classical many-body model for heavy-ion collisions incorporating the Pauli principle. Nuc. Phys. A282:341-350.

10
Kirschbaum, C. L., Wilets, L. 1980. Classical many-body model for atomic collisions incorporating the Heisenberg and Pauli principles. Phys. Rev. A. 21(3):834-841.

11
Hansen, J. P., McDonald, I. R. 1981. Microscopic simulation of a strongly coupled hydrogen plasma. Phys. Rev. A. 23(4):2041-2059.

12
Dorso, C., Duarte, S., Randrup, J. 1987. Classical simulation of the fermi gas. Phys. Lett. B. 188(3):287-294.

13
Dorso, C., Radnrup, J. 1988. Classical simulation of nuclear systems. Phys. Lett. B. 215(4):611-616.

14
Boal, D. H., Glosli, J. N. 1988. Quasiparticle model for nuclear dynamics studies: ground-state properties. Phys. Rev. C. 38(4):1870-1878.

15
Boal, D. H., Glosli, J. N. 1988. Quasiparticle model for nuclear reaction studies: quasiparticle dynamics. Phys. Rev. C. 38(6):2621-2629.

16
Klakow, D., Toepffer, C., Reinhard, P.-G. 1994. Semiclassical molecular dynamics for strongly coupled Coulomb systems. J. Chem. Phys. 101(12):10766-10774.

17
Feldmeier, H., Schnack, J. 2000. Molecular dynamics for fermions. Rev. Mod. Phys. 72(3):655-688.

18
Maruyama, T., Ohnishi, A., Horiuchi, H. 1992. Evolution of reaction mechanisms in the light heavy-ion system. Phys. Rev. C. 45(5):2355-2368.

19
Beck, W. A., Wilets, L. 1997. Semiclassical description of proton stopping by atomic and molecular targets. Phys. Rev. A. 55(4):2821-2829.

20
Knaup, M., Reinhard, P-G., Toepffer, C., Zwicknagel, G. 2003. Wave packet molecular dynamics simulations of warm dense hydrogen. J. Phys. A: Math. Gen. 36:6165-6171.

21
Cohen, J. S. 1998. Extension of quasiclassical effective Hamiltonian structure of atoms through Z = 94. Phys. Rev. A. 57(6):4964-4966.

22
Wilson, C. W., Goddard, W. A. III. 1972. Ab initio calculations on the $ \mathrm{H_{2} + D_{2} \rightarrow 2 HD}$ four-center exchange reaction. II. Orbitals, contragradience, and the reaction surface. J. Chem. Phys. 56(12):5913-2920.

23
Unless otherwise indicated, all thermochemistry and geometry data was taken from the NIST Chemistry Webbook: Linstrom, P. J., Mallard, W. G., Eds 2005. NIST Chemistry Webbook, NIST standard reference database number 69, National Institute of Standards and Technology, Gaithersburg, MD, 20899 (http://webbook.nist.gov).

24
Frost, A. A., Rouse, R. A. 1968. A floating spherical gaussian orbital model of molecular structure. IV. Hydrocarbons. J. Am. Chem. Soc. 90:1965-1969.

25
Hamilton, J. G., Palke, W. E. 1993. Bonding in cylcopropane. J. Am. Chem. Soc. 115:4159-4164.

26
Hoffman, R. W. 1989. Allylic 1,3-strain as a controlling factor in stereoselective transformations. Chem. Rev. 89:1841-1860.

27
Gage, J. R., Evans, D. A. 1990. Diastereoselective aldol condensation using a chiral oxazolidinone auxiliary. Org. Synth. 68:83-91.

28
Ellison, G. B., Engelking, P. C., Lineberger, W. C. 1978. An experimental determination of the geometry and electron affinity of methyl radical. J. Am. Chem. Soc. 100:2556-2558.

29
Dixon, D. A., Feller, D., Peterson, K. A. 1997. Accurate calculations of the electron affinity and ionization potential of the methyl radical. J. Phys. Chem. A. 101:9405-9409.

30
Perera, S. A., Bartlett, R. J., Schleyer, P. von R. 1995. Predicted NMR coupling constants and spectra for ethyl carbocation: a fingerprint for nonclassical hydrogen-bridged structures. J. Am. Chem. Soc. 117:8476-8477.

31
Koch, W., Liu, B., Schleyer, P. von R. 1989. Definitive characterization of the $ \mathrm{C_{3}H_{7}^{+}}$ potential energy surface. J. Am. Chem. Soc. 111:3479-3480.

32
Diedrich, D., Anderson, J. B. 1994. Exact quantum Monte Carlo calculations of the potential energy surface for the reaction $ \mathrm{H + H_{2} \rightarrow H_{2} + H}$ J. Chem. Phys. 100(11):8089-8095.

33
Boothroyd, A. I., Martin, P. G., Keogh, W. J., Peterson, M. J. 2001. An accurate analytic $ \mathrm{H_{4}}$ potential energy surface. 2001. J. Chem. Phys. 116(2):666-689.

34
Barbosa, A.G.H., Nascimento, M.A.C. 2004. Ground state of the beryllium atom: reinvestigation based on a proper independent particle model. Int. J. Quant. Chem. 99:317-324.

35
Kottke, T., Stalke, D. 1993. Structures of the classical synthesis reagents $ \mathrm{(BuLi)_{6}}$ and $ \mathrm{(Me3CLi)_{4}}$ and the metastable $ \mathrm{(Me_{3}CLi.OEt_{2})_{2}}$. Angew. Chem. Int. Ed. 32(4):580-582.

36
Dill, J. D., Schleyer, P.v.R., Pople, J. A. 1975. Molecular orbital theory of the electronic structure of organic compounds. XXIV. Geometries and energies of small boron compounds. Comparisons with carbocations. J. Am. Chem. Soc. 97(12:3402-3409.

37
Schreiner, P. R. 2000. Does $ \mathrm{CH_{5}^{+}}$ have (a) structure? A tough test for experiment and theory. Angew. Chem. Int. Ed. 39(18):3239-3241.

38
Komornicki, A., Dixon, D.A. 1987. Structure, vibrational spectrum, and energetics of the $ \mathrm{CH_{5}^{+}}$ ion. A theoretical investigation. J. Chem. Phys. 86(10):5625-5634.

39
Langmuir, I. 1912. The dissociation of hydrogen into atoms. J. Am. Chem. Soc. 34:860-877.

40
Saha, M. N. 1920. Ionization in the solar chromosphere. Phil. Mag. 40:72-88.

41
Nickel, G. H. 1980. Elementary derivation of the Saha equation. Am. J. Phys. 48(6):448-450.

42
Van Horn, H. M. 1991. Dense astrophysical plasmas. Science. 252(5004):384-389.

43
Saumon, D., Chabrier, G. 1989. Fluid hydrogen at high density: the plasma phase transition. Phys. Rev. Lett. 62(20):2397-2400.

44
Saumon, D., Chabrier, G. 1992. Fluid hydrogen at high density: pressure ionization. Phys. Rev. A. 46:2084-2100.

45
Pierleoni, C., Ceperley, D.M., Bernu, B., Margo, W.R. 1994. Equation of state of the hydrogen plasma by path integral Monte Carlo simulation. Phys. Rev. Lett. 73(16):2145-2149.

46
Militzer, B., Margo, W., Ceperley, D. 1999. Characterization of the state of hydrogen at high temperature and density. Contrib. Plasm. Phys. 39(1-2):151-154.

47
Militzer, B., Ceperley, D.M. 2000. Path integral Monte Carlo calculation of the deuterium hugoniot. Phys. Rev. Lett. 85(9):1890-1893.

48
Militzer, B., Ceperley, D.M. 2001. Path integral Monte Carlo simulation of the low-density hydrogen plasma. Phys. Rev. E. 63:66404.

49
Delaney, K. T., Pierleoni, C., Ceperley, D.M. 2006. Quantum Monte Carlo Simulation of the high-pressure molecular-atomic crossover in fluid hydrogen. Phys. Rev. Lett. 97:235707.

50
Margo, W.R., Ceperley, D.M., Pierleoni, C., Bernu, B. 1996. Molecular dissociation in hot, dense hydrogen. Phys. Rev. Lett. 76(8):1240-1243.

51
Holmes, N.C., Ross, M., Nellis, W.J. 1995. Temperature measurements and dissociation of shock-compressed liquid deuterium and hydrogen. Phys. Rev. B. 52(22):15835-15845.

52
Knudson, M.D., Hanson, D.L., Bailey, J.E., Hall, C.A., Asay, J.R., Anderson, W.W. 2001. Equation of state measurements in liquid deuterium to 70 GPa. Phys. Rev. Lett. 87(22):225501.

53
Knudson, M.D., Hanson, D.L., Bailey, J.E., Hall, C.A., Asay, J.R. 2003. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. Phys. Rev. Lett. 90(3):35505.

54
Da Silva, L.B., et al. 1997. Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar). Phys. Rev. Lett. 78(3):483-486.

55
Collins, G.W., et al. 1998. Measurements of the equation of state of deuterium at the fluid insulator-metal transition. Science. 281:1178-1181.

56
Thompson, M., Baker, M.D., Christie, A., Tyson, J.F. 1985. Auger electron spectroscopy. John Wiley and Sons (ISBN 0-471-04377-X).

57
Coville, M., Thomas, T.D. 1991. Molecular effects on inner-shell lifetimes: possible test of the one-center model of Auger decay. Phys. Rev. A. 43(11):6053-6056.

58
Prince, K. C., Richter, R., de Simone, M., Coreno, M. 2003. Dynamics of core hole states and ultrafast dissociation of organic molecules. Elettra research highlights, http://www.elettra.trieste.it/science/highlights/2003-2004/elettra-hl0304-r03.pdf.

59
Auger, P. 1923. The secondary rays produced in a gas by X-rays. Compt. Rend. 177:169-172.

60
Tilinin, I. S., Jablonski, A., Werner, W. S. M. 1996. Quantitative surface analysis by Auger and x-ray photoelectron spectroscopy. Prog. Surf. Sci. 52(4):193-335.

61
Tarantelli, F., Cederbaum, L. S., Sgamellotti, A. 1995. The ab initio simulation of Auger spectra. J. Elec. Spec. and Rel. Phenom. 76:47-54.

62
Rye, R. R., Jennison, D. R., Houston, J. E. 1980. Auger spectra of alkanes. J. Chem. Phys. 73(10):4867-4874.

63
Knotek, M. L., Feibelman, P. J. 1978. Ion desorption by core-hole Auger decay. Phys. Rev. Lett. 40(14):964-967.

64
Knotek, M. L., Jones, V. O., Rehn, V. 1979. Photon-stimulated desorption of ions. Phys. Rev. Lett. 43(4):300-303.

65
Jennison, D. R., Kelber, J. A., Rye, R. R. 1982. Localized Auger final states in covalent systems. Phys. Rev. B. 25:1384-1387.

66
Gillis, H.P., et al 1995. Low energy electron-enhanced etching of Si(100) in hydrogen/helium direct-current plasma. Appl. Phys. Lett. 66(19):2475-2477.

67
Takahashi, O., et al 2006. Auger decay calculations with core-hole excited-state molecular-dynamics simulations of water. J. Chem. Phys. 124:064307.

68
Brena, B., et al. 2004. Ultrafast molecular dissociation of water in ice. Phys. Rev. Lett. 93(14):148302.

69
Bieri, G., Burger, F., Heilbronner, E., Maier, J. P. 1977. Valence ionization energies of hydrocarbons. Helv. Chim. Acta. 60(7):2213-2233.

70
Myrseth, V., Bozek, J. D., Kukk, E., Saethre, L. J., Thomas, T.D. 2002. Adiabatic and vertical carbon 1s ionization energies in representative small molecules. J. Elec. Spec. and Rel. Phen. 122:57-63.

71
Carroll, T. X., et al. 1999. Carbon 1s photoelectron spectrum of methane: Vibrational excitation and core-hole lifetime. Phys. Rev. A. 59(5):3386-3393.

72
Karlsen, T., et al. 2001. Vibrational structure and vibronic coupling in the carbon 1s photoelectron spectra of ethane and deuteroethane. J. Phys. Chem. A. 105:7700-7706.

73
Kukk, E., et al/ 2002. Dissociation of deuteromethane following carbon 1s core ionization. Phys. Rev. A. 66:012704.

74
Jennison, D. R., Kelber, J. A., Rye, R. R. 1982. Localized Auger final states in covalent systems. Phys. Rev. B. 25(2):1384-1387.



Julius 2008-04-29