Dr. Boris Merinov jointed Caltech in 1999 first as a visiting research associate and then as associate scientist (2002), senior scientist (2010) and lead scientist (2012). He is an internationally recognized expert in materials and processes for fuel cell and battery applications. Dr. Merinov has been associated with top research institutes, such as Institute of Crystallography, Moscow, Russia (1977-1999), University of Munich (Humboldt Fellow, 1992), University of Montpellier, France (French Ministry of Research and Technology Research Fellow, 1993; Visiting Scientist and Visiting Professor, 1995-1996), Hahn-Meitner-Institute Berlin GmbH (Visiting Scientist, 1994), and University of Hamburg/DESY (Volkswagen Fellow, 1996-1997; Humboldt Fellow, 1998-1999). He is a pioneer in the study and characterization of an emergent class of materials, solid acids. In collaboration with Prof. Baranov, Dr. Merinov discovered superprotonic phase transitions in a number of solid acid materials, including CsH2PO4 (Solid State Ionics 36, 279-282, 1989) which is now widely used in a new type of fuel cells, solid acid fuel cells (Nature 410, 910-913, 2001), invented by Professor Sossina Haile and her former students Dane Boysen and Calum Chisholm (SAFCell). Dr. Merinov established himself as one of the foremost authorities in the field of solid state proton conductors through his unique structural studies of solid acids, which were crucial for understanding very deep aspects of structure arrangements, proton transport and phase transitions in solid acids. These fundamental studies enabled to understand the potential of this class of materials.

At present, Dr. Merinov successfully develops new approaches and techniques for computational modeling of solid electrolytes, high-conductive polymers, electrode/electrolyte interfaces, transport phenomena, catalytic reactions and other physico-chemical processes in fuel cells and batteries. Development of predictive computational models performed by Dr. Merinov, will allow the experimental synthesis and characterization to be focused on the most promising materials, enabling more rapid progress in energy related technologies.