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Colloids

e Alatex is a colloidal dispersion (suspension) of
polymer particles in water

* Latex particles consist of polymer molecules of any
molar mass (typically 5000 to 1 x 10°)

* Colloidal stability is coulombic or steric in origin
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DOW stage 2 predominant (Dr. Willie Lau will send description)

Latex formation process

1. Particle nucleation (homogeneous or micellar)
2. Growth fed my monomer molecules in solution

D surfactant % .

o micelle

Growing polymer .
: °

nanoparticles \ %

Initiation occurs in water phase
Polymerization occurs in water phase and in the particles
Oligomers “eaten” by larger particles (in water they exceed solubility)



General Latex composition

LMA (Lauryl methacrylate) or SMA (Stearyl methacrylate):
BA (butyl acrylate): controls Tg and other film properties

MMA* (methacrylic acid): improve colloidal stability,
control the reaction kinetics and viscosity

MMA (Methyl methacrylate): main functional polymer,
provide mechanical stability

(Divinyl benzene) crosslinker: polymer crosslinker,
crosslinker may be used after film is formed !

Surfactant C12H25(0C2H4)4S04-Na+ (Dodecil benzene
sulphonic acid - Disponil FES 321S). Emulsifier that also
controls kinetics and acts as an electrosteric stabilization
agent



What influences latex’s colloidal
properties

* Particle size and particle size distribution,
e Particle surface charge density,
* Particle surface area covered by stabilizers,

* Conformation of the hydrophilic polymer adsorbed or
coupled onto the particle surface,

* Type and concentration of functional groups on the
particle surface,

* Optical and rheological properties
* Colloidal stability

What has DOW characterized from their latex ?



What influences latex’ colloidal
properties: particle nucleation

* Emulsion polymerization->segregation of free radicals
among monomer-swollen polymer particles->reduced
probability of bimolecular termination of free radicals

* This leads to faster polymerization rate and emulsion
polymer with a higher molecular weight

* Transport of monomer, free radicals, and surfactant to
the growing latex particles and partition of these
reagents among the continuous aqueous phase, the
monomer emulsion droplets (the monomer reservoir),
and the monomer-swollen polymer particles (the
primary reaction loci) play a crucial role in the particle
growth stage.



Micelle formation and
Colloid dynamics

(Coarse-grain models)

Micelle (FENE) Colloid (LJ)

Increased
length- and
time-
scales

Micelle formation, polymer nanoparticle formation, polymer-to-micelle migration, hydrophilic

stabilizers, interfaces and mechanical properties during/after water evaporation




Film formation process

latex in
water

= drying
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Water evaporation
1H,0/1000 t.u. @P=1,T=0.45

Induced evaporation (i.e. no surface yet), mixture dries and polymer diffuses




Thermodynamics during evaporation

Dynamics of Latex Formation

Water Evaporation
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Minimum Film Formation
Temperature (MFT)

LATEX FILM FORMATION

glass

Tg=0°C Tg=75°C

\ _ rubbery

storage modulus E’
— — — —
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Deformation 108 flow
p;s::]tte:;s - 50 0 50 100
temperature
b The MFT is the
minimum
temperature at
\ ‘ which the latex will

form a transparent
film on drying.
The polymer ving
modulus must be
less than 107 Pa

Dynamic Modulus = storage modulus + i loss modulus
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Nanoparticle packing

Isotropic deformation of fcc packed latex
particles leads to rhombic dodecahedra

Forces associated with drying deform latex
spheres into space-filling polyhedral cells.
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Capillary forces, surface tension .

/ / isotropic
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;/"/ biaxial PBMA d = 337 nm
20 h at 36 °C
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Structured Latex Nanoparticles

* Monomers inserted in stages or all at once?
i.e. second stage co-polymerization may be
used to obtain structured latex particles

— crosslinked core, hard core-soft shell, soft core-

hard shell

DOW DOES NOT STAGE FORMATION

core-shell




Tuning

Plasticizers lower Tg and decrease the
modulus (i.e. enhanced coallesence)

— If an organic solvent is added to the latex and
dissolves in the particles, it will act as a plasticizer

— Volatile solvents added to the dispersion, lower
the modulus of the polymer in the particles
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H>2d: No interaction
d<H<2d: High density of macromolecular segments leads to drop in
osmotic pressure and flux of water into zone which causes repulsion
H<=d: Elastic compression of the surfactant caused by physical repulsion of
the surfaces and hydrophilic heads.
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Entanglement

* For certain polymers above a critical molar mass
(M,), the melt viscosity increases as M3, This
behavior is attributed to the effect of entanglements

— Solutions of polymers with M >> M have very high
viscosity

— There is an increase in strength associated with
entanglements

* The confining effect of the surrounding chains act
like a confining tube

* Latex dispersions maintain low viscosity for high
solids even for high M polymers

Entanglement: Graessley, 1974; Tonelli, AE Polymers from the Inside Out, Wiley, 2001 p 139
Strength: R. Wool, Polymer Interfaces, 1997



Molecular Model Polymer Compositions

Composition (co-polymerized)

o Hydrophobic:
— 20% BA, 40%LMA, 39% MMA, 1%MMA* (Mass Fraction)
— 23.4% BA, 21.3%LMA, 53.0%MMA, 2.2%MMA* (Mole Fraction)

o Hydrophilic:
— 60% BA, 39% MMA, 1%MMA* (Mass Fraction)
— 56% BA, 42.2%MMA, 1.8%MMA* (Mole Fraction)

o 0.2 nDDM
o Tg~10°C
o Neutralization: NH,OH, NaOH (OH, Na+, Cl-)

e Constructed 4/5 100-mer strands for system sizes ~10,000 atoms
(vacuum)



System Preparation: Mon r Units

¢

-
Lauryl Methacrylate (LMA) Buytl Acrylatge (BA)

¢

Methyl €
Methylacrylate Methacrylic Acid
(MMA) (MMA¥)



System Preparation: Amorphous Structure

* The strands are then arranged in a random

conformation within a cell defined by periodic
boundary conditions.

%
e,
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Polymer Structure Preparation
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Heating/Expansion Cycles

e Start at half target density

 Heat from 300-1200K over
50ps, simultaneously
doubling the volume (half
the start density)

 Equilibrate @high
temperature for 50ps

* Cool back to 300K over 50ps,

simultaneously compressing
to 1/4t™ the volume (twice
the start density)

* Repeat

Applies to vacuum and solvated systems

Conjugate Energy Density (CED) approach
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Equilibration of Hydrophobic System:
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Solvation

* Hydrophilic: 246 water molecules (9 wt%)

 Hydrophobic: 362 water molecules (10 wt%)




System Entanglement




Analysis: Glass Transition Temperature

T, calculated from MD.*
Step 1) A characteristic length is defined for the system:

(Ro-o)
Le="—

Where R is the first peak of the radial distribution function (RDF). In this
system, the distribution of carboxyl oxygens is tracked.

Step 2) dynamics are performed for 100ps at a range of temperatures

Step 3) The root mean square displacement (RMSD) is measured for the
atoms of interest (oxygens)

Step 4) The temperature at which the RMSD equals the L_ is the glass
transition temperature.

Tamai, Yoshinori, “A practical method to determine glass transition temperature in molecular dynamics
simulation of mixed ionic glasses”, Chemical Physics Letters, vol. 351 (2002) pp. 99-104
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Analysis: RDF of carbonyl oxygens: 1 peak at 3 angstroms (L_c=1.5)
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At 300 K, RMSD = 11.5 angstrom
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At 170 K, RMSD = 5.75 angstrom

Rmsd vs Frame *(type 5) and noh"
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MSD
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Hydrophobic: O RDF

RDF for Oxygen After Initial NVE Equilibration
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Hydrophobic: C RDF

RDF for Carbon After Initial NVE Equilibration
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Hydrophobic: H RDF

RDF for Hydrogen After Initial NVE Equilibration
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Hydrophobic: resonance O MSD

MSD for Resonance Oxygen During Final NPT Equilibration
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Hydrophobic: aromatic C MSD

MSD for Aromatic Carbon During Final NPT Equilibration
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Hydrophobic: O RDF

RDF For Oxygen After Final NPT Equilibration
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Hydrophobic: C RDF

RDF for Carbon After Final NPT Equilibration
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Hydrophobic: final volume

Volume During Final NPT Equilibration

4
x10
1 T T T |
!.
l \\»
s A o.»" "%W“\‘”’ “,; "”»:‘"’." o
s 0w "\“} v ‘.\t\
F 4 +
. N
105 2NV _
4 , A ¢'
i
o8
*
*
*
—_ 10} ¢ "
1]
< 4
S’ *
QL
E *
= X
=
= 95 —
1>
- _
85 l | | | | | | | |
5 5.05 5.1 515 5.2 5.25 5.3 5.35 5.4 5.45 55
Time (fs) xA8°



RDF for Hydrogen After initial Equilibration
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RDF for Hydrogen after Final NPT Equilibration
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RDF for Carbon After Initial NVE Equilibration
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RDF for sp3 and Aromatic Carbon in Hydrophobic System
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Density

* From final NPT equilibration:
— Volume: 107385 A3, or 1.07 X 102 cm3

* Mass: 55781 amu, or 9.26 X 1020 g
* Density: 0.86 g/cm?3



Solvation

10 wt% water

Added water box to low-density polymer
1000 steps CG minimization

Heated 10-300K over 50ps

Equilibrated at 300K (NVE) 100ps

100ps NVT at 300K

100ps NPT at 300K, 1atm



Solvation- 10wt% Water
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Volume (A3)

Hydrophobic: solvated volume

Volume During NPT Equilibration of Solvated System
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MSD

MSD for Water After NPT Equilibration
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g(r)
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RDF For Water after NPT Equilibratio
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Volume [AngstromsB)

Volume of Hydrated System During NPT Equilibration
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Void analysis in dry systems
Void % and volume for low density systems (~0.6 g/cc)

Hydrophobic Hydrophilic

12.023% 13.451%
18.7 nm3 20.3 nm3
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PREDICTING THE EQUILIBRIUM WATER
CONTENT IN CBMA HYDROGELS FROM
FIRST PRINCIPLE SIMULATIONS



Carboxybetain methacrylate Hydrogels

< g « superior suitability for
), biomedical applications
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(CBMA), 2. N,N’-methylenebis ’ Used as Scaﬂ:OldS In

(acrylamide) crosslinker 3. fissue engineering and
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crosslinker JOlnt replacment

€ &

Physical crosslinking of zwitterionic polymer chains. (a) Inter-chain
crosslinking; (b) Intra-chain crosslinking



Molecular Dynamics simulations
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Free Energy MD Simulations
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Insights into the role of water
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Water enhances the low frequency breathing

modes of the hydrogel at low water content




The entropy of water inside hydrogels
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Conclusions

Using computational tools developed at Goddard
lab, we are able to predict the experimental
optimal water content of CBMA hydrogel

The enthalpy dominates the interactions in the
systems

Water acts to enhance the low energy vibrational
state of the hydrogel before equilibrium by

binding to surface

Water transitions into a quasi-liquid phase at
higher content, destabilizing hydrogel matrix



