DOW Latex Water ImPermeability Degradation: Coarse Grain Force Field and Models

Caltech: Jason Crowley, Himanshu Mishra, Andres Jaramillo-Botero and William A Goddard

DOW: Willie Lau, Susan Fitzwater, Joe Rokowski

Outline

- Recap
- Changed to the CG force field model. Water model (Morse to SW) and 1-3 nonbond UB
- Developed coarse-grain description for waterpolymer interactions
- Validated CG force field on hydrophilic and hydrophobic cases
- Built large-scale CG models for hydrophobic and hydrophilic cases
- Work in progress 9/10/2012 Caltech (MSC): DOW Chemical

RECAP

9/10/2012

Polymer Latex Systems studied

60 BA/39 MMA/1 MAA//0.2 nDDM
 40 BA/20 LMA/39 MMA/1 MAA//0.2 nDDM
 3) 20 BA/40 LMA/39 MMA/1 MAA//0.2 nDDM

Recap on on why we needed CG model

- Bonds and angles have characteristic time scales τ~10⁻¹³s and torsion τ~10⁻¹¹s
- A polymer coil $n_p < n_e$ (Rouse model) needs at least x n_p^2 to equilibrate, i.e. n_p^2/ω , and $n_p^3/(n_e\omega)$ for $n_p \ge n_e$ (reptation model)
- PE has n_e~100, therefore relaxation time for a chain with 10²≤n_p≤10² is т~10⁷-10⁴s
- For low temperatures (near T_g) relaxation time may be much larger (macroscopic)
- DOW polymers considerably more complicated than PE, may need additional equilibration effort

Atomistic to Coarse-grain forward/reverse mapping

Ø/10/2012 *at time t*

Caltech (MSC): DOW Chemical

at time $(t + \Delta t)$

CG FORCE FIELD AND MODEL UPDATES

Original Molinero-Goddard's coarse-grain water model

 3 Morse parameters adjusted to reproduce experimental density, intermolecular energy, and diffusion coefficient of water at 300 K and 1 atm.
 Diffusion coefficient also considered (because of water transport in polymer film).

bead type R_0 (Å)		D_0 (kcal/	/mol) a
_ W	3.77	1.15	i 8
water	ρ (g/cm ³)	E (kcal/mol)	$D (10^{-5} \text{ cm}^2/\text{s})$
W	0.97(2)	-10.2(1)	1.7
exptl	0.996 ^a	-10.517^{a}	2.4^{b}

J. Phys. Chem. B 2004, 108, 1414-1427

a) CRC Handbook of Chemistry and Physics, 81st ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 2000-2001. b) CODATA Key Values for Thermodynamics; Cox, 91. Con, 1984.

Changed water model (mW)

- Water and Si are dissimilar chemical substances with common physical properties. Their liquids display a T of maximum density, increased diffusivity on compression, and they form tetrahedral crystals and tetrahedral amorphous phases
- Molinero et al [1] found that it is not the nature of interactions but connectivity of molecules that determines structural and thermodynamic behavior of water
- Prevailing CG models use of long-ranged forces (electrostatics) to produce short-ranged (hydrogen-bonded) structure
- Molinero et al [1] developed a CG water model (mW) that is essentially an atom with intermediate tetrahedrality between C and Si. Showed mW was useful for wetting-drying transitions
- mW mimics the H-bonded structure of water <u>through a nonbond</u> angular dependent term that encourages tetrahedral 9/10/2012 <u>Caltech (MSC): DOW Chemical</u> 10

mW: a Stillinger-Weber (SW) type monoatomic potential

• To "make water out of silicon" started from SW Si potential, i.e. tetrahedral coordination of atoms favored by a pairwise potential $v_2(r)$, a three-body term $v_3(r,\theta)$ that penalizes configurations with angles that are not tetrahedral, $v=v_2(r)+\lambda v_3(r,\theta)$, where λ tunes the strength of the tetrahedral penalty.

$$E = \sum_{i} \sum_{j>i} \varphi_2(r_{ij}) + \sum_{i} \sum_{j\neq i} \sum_{k>j} \varphi_3(r_{ij}, r_{ik}, \theta_{ijk})$$

$$\varphi_2(r) = A\varepsilon \Big[B\Big(\frac{\sigma}{r}\Big)^p - \Big(\frac{\sigma}{r}\Big)^q \Big] \exp\Big(\frac{\sigma}{r-a\sigma}\Big)$$
$$\varphi_3(r,s,\theta) = \lambda\varepsilon [\cos\theta - \cos\theta_o]^2 \exp\Big(\frac{\gamma\sigma}{r-a\sigma}\Big) \exp\Big(\frac{\gamma\sigma}{s-a\sigma}\Big)$$

 $_{9/10/20}$ $\lambda = 23.15$, $\epsilon = 6.189$ Kcal/mol and $c_h (2.3925 \text{Å})$ all other parameters are identical to silicon

Comparison of mW to other water models

	T _{m HEX. ICE} (K)	$\Delta H_{\rm m} (T_{\rm m})$ (kcal·mol ⁻¹)	$ ho_{ m liquid} (T_{ m m})$ (g·cm ⁻³)	$ ho_{\rm ice} (T_{\rm m})$ (g*cm ⁻³)	ρ _{liquid} (298 K) (g•cm ⁻³)	$\Delta H_{\rm vap}$ (298 K) (kcal·mol ⁻¹)	D (298 K) (10 ⁻⁵ cm ² *s ⁻¹)	$\begin{array}{c} \gamma_{\rm LV} ~(300~{\rm K}) \\ mJ\!\cdot\!m^{-2} \end{array}$	TMD (K)	Pliquid, MAX (TMD) (g•cm ^{−3})
exp	273.15	1.436	0.999	0.917	0.997	10.52	2.3	71.6	277	0.99997
mŴ	274.6	1.26	1.001	0.978	0.997	10.65	6.5	66.0	250	1.003
SPC	(191)	0.62	0.991	0.934	0.977	10.56	4.0	53.4	228	1.008
SPCE	(215)	0.74	1.007	0.950	0.999	10.76	2.4	61.3	241	1.012
TIP3P	(146)	0.30	1.017	0.947	0.986	10.17	5.3	49.5	182	1.038
TIP4P	232	1.05	1.002	0.940	1.001	10.65	3.9	54.7	253	1.008
TIP5P	(274)	1.75	0.987	0.982	0.999	10.46	2.6	52.3	285	0.989

Melting temperatures of hexagonal ice, densities of liquid, and crystal phase at coexistence and enthalpy of melting are from [1]. Parentheses enclosing a Tm signal that the stable crystal is ice II, not hexagonal ice, for these models [2]. Diffusion coefficients D and density at 298 K are from [3] and [4]. Liquidvacuum surface tensions are from [5]. TMD and its corresponding liquid density Fliquid, MAX are from ref [6]. Bold numbers signal the closest agreement with the experiment

- 1. Vega, C.; Sanz, E.; Abascal, J. L. F. J. Chem. Phys. 2005, 122, 114507.
- 2. Vega, C.; Abascal, J. L. F.; Sanz, E.; MacDowell, L. G.; McBride, C. J. Phys.: Condens. Matter 2005, 17, S3283.
- 3. Wu, Y. J.; Tepper, H. L.; Voth, G. A. J. Chem. Phys. 2006, 124, 024503.
- 4. Abascal, J. L. F.; Vega, C. J. Chem. Phys. 2005, 123, 234505.

5. Chen, F.; Smith, P. E. J. Chem. Phys. **2007**, 126, 221101. 9/6.0/2 Vega, C.; Abascal, J. L. F. J. Chem. Phys. **2005**, ep. 3, MAG04 DOW Chemical

CG FF Modification: Urey-Bradley Term

 Add repulsive 1-3 interactions to the force field by a harmonic Urey-Bradley term

$$E_{UB}(r_{13}) = K_{UB}(r_{13} - r_{UB})^2$$

where r_{13} is the distance between 1-3 pairs, K_{UB} is a force constant and r_{UB} is the equilibrium 1-3 distance. Use same fit procedure as for bonds

SUMMARY OF CG FORCE FIELD PARAMETERS FOR DOW LATEX

Coarse-Grain Parameters: Bond (1-2) and Urey-Bradley (1-3)

Bond Type	K	r0	UB Type	K_UB	r_UB
MA-Me	73.534	2.507	A-A	1.557	4.840
MA-MB1	61.947	2.492	A-MA	3.926	4.922
MB1-MB2	2.047	4.713	A-EB	4.962	7.048
EB-MB2	4.091	5.065	A-MB1	1.054	4.391
MB2-MB2	2.549	5.062	A-Me	6.154	3.633
MA-MA	89.374	2.863	A-OH	1.068	4.553
A-MA	76.578	2.772	MA-MA	4.329	5.050
MA-OH	109.422	2.519	MA-MB2	0.357	10.710
A-MB1	55.244	2.472	MA-MB1	1.938	4.289
A-A	83.514	2.706	MA-Me	1.765	4.097
MB1-EB	2.409	4.855	MA-OH	5.173	3.559
			EB-MB2	0.207	8.649
			MB1-MB2	0.339	8.870

Coarse-Grain Parameters: Polymer-Polymer and Polymer-Water Nonbond Interactions (Morse Potential)

	A-A	A-MB1	A-EB	A-MA	A-Me	A-OH	A-MB2
D	1.579	3.892	0.598	2.710	2.991	10.512	0.787
α	0.375	0.325	0.286	0.400	0.219	0.324	0.210
r0	10.771	10.718	10.187	11.224	9.155	6.710	11.878
	MB1-MB1	MB1-EB	MB1-MA	MB1-Me	MB1-OH	MB1-MB2	EB-EB
D	1.504	0.333	3.476	1.255	2.233	0.832	0.892
α	0.189	0.263	0.177	0.226	0.284	0.184	0.197
r0	11.744	11.800	10.790	10.772	7.466	13.303	12.840
	EB-MA	EB-Me	EB-OH	EB-MB2	MA-MA	MA-Me	MA-OH
D	0.711	0.478	0.889	0.381	1.830	2.325	10.551
α	0.263	0.282	0.369	0.269	0.187	0.222	0.188
r0	11.838	11.095	8.181	11.530	12.672	9.924	6.667
	MA-MB2	Me-Me	Me-OH	Me-MB2	OH-OH	OH-MB2	MB2-MB2
D	0.945	1.052	0.889	0.587	1.278	0.405	0.757
α	0.195	0.264	0.349	0.234	0.387	0.204	0.184
r0	12.883	10.383	8.181	11.871	6.854	12.282	13.696
	A-W	MB1-W	EB-W	MA-W	Me-W	OH-W	MB2-W
D	1.842	4.894	0.110	2.408	3.173	2.970	0.447
9/10 a	^{/2012} 0.430	0.580	0.580	(MSC): DOW (0.480	Chemical 0.630	0.580	0.580
r0	7.816	9.046	9.891	8.910	6.856	5.919	7.630

CG MODEL VALIDATIONS AGAINST ATOMISTIC

Total RDF: Phobic

Density for CG 2.2% lower than density for atomistic (0.81 for CG versus 0.82 for atomistic)

Phobic (dry) Rg

	Chain 1	Chain 2	Chain 3	Chain 4
CG	37.65	39.23	27.47	39.62
Atomistic	36.69	38.19	26.53	37.76
		(400)		

Phobic (10%) Rg

	Chain 1	Chain 2	Chain 3	Chain 4
CG	37.86	40.44	28.70	39.52
Atomistic	36.98	38.46	26.69	37.90

Philic (dry) Rg

		Chain 1	Chain 2	Chain 3	Chain 4
	CG	31.36	31.68	27.56	43.34
9/10/2012	Atomistic	29.38 ^{altech}	(MSC290899 hem	^{iical} 27.54	41.84

Phobic, 10%, Polymer-Water RDF

Density 1.6% lower than atomistic (swelling ratio consistent)

Total RDF: Philic

Density for CG 0.4% higher than atomistic

Coarse-grain versus Atomistic Modeling: Phobic system

We can now do much larger systems over longer runs

CG: 5 chains, DP = 300044,455 beads, 10fs timestep 9/10/2012

Atomistic: 4 chains, DP = 30028670 atoms, 1fs timestep Caltech (MSC): DOW Chemical 22

Coarse-grain versus Atomistic Modeling: Philic system

CG: 5 chains, DP = 3000 38,082 beads, 10fs timestep Atomistic: 4 chains, DP = 300 21,983 atoms, 1fs timestep

Caltech (MSC): DOW Chemical

Next ...

- Use large-scale models for all cases to study the effect of water solvation cycles (i.e. evaporation+absorption) on structural transformations
- Use GCMC on CG models to detect changes in equilibrium water content after cycling (long CG-MD)
- Analyze intermediate structures
- Potential challenges: long equilibration/relaxation times (options: Accelerated CG-MD)

