California Institute of Technology Materials and Process Simulation Center

Jason Crowley, David Lehtihet, Andres Jaramillo-Botero and William A. Goddard III

DOW 12-20-2011

27 February 2012 Progress

- Completed building structures with new method for water insertions
- Swelling ratios, water fragment analysis (for percolation threshold)
- Stress on water, polymer
- Thermodynamics including chemical potential of water

Hydrophobic swells more than hydrophilic. Most pronounced difference 5-15%

Water Fragment Analysis in Hydrophobic and Hydrophilic System

Hydrophobic system has an inflection point at 13%, hydrophilic at 15% Suggests percolation occurs sooner in hydrophobic than hydrophilic

Average Volume Per Water Molecule

Volume per water molecule consistently larger in hydrophilic structure. The relatively hydrophilic structure puts less stress on the water, and thus they occupy a larger volume

Higher stress on waters in hydrophobic system. Stress on waters reduced with increased water content in both. Tends toward 0.

Hydrophobic continues resisting swelling even at 40% (stress on polymer still increasing) Hydrophilic stops resisting at ~15% (stress flattens out)

Suggests hydrophobic structure is stronger

Total (water + polymer) thermodynamics

Total (water + polymer) thermodynamics

Free energy lower in hydrophobic system after 12%

Total Entropy (-TS) in Hydrophobic and Hydrophilic Systems 0.6 0.5 Energy (kJ/mol/atom) Hydrophobic Hydrophilic -0.1 Wt % Water

Chemical Potential of Water

From numerical differentiation of water free energy.

Identical in both systems. Decreases approximately linearly with water content (tending toward the chemical potential of bulk water)

F factor controls screening of non-bonded interactions.

van der Waals =
$$4 * \epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

 ϵ = interaction strength

 σ = effective atom size

Electrostatic =
$$\frac{q_1 * q_2}{\epsilon * r}$$

 ϵ = dielectric constant (permitivity)

van der Waals
$$\rightarrow$$
 F * ϵ

Electrostatic $\rightarrow \frac{1}{F} * \epsilon$

Simulates an effective solvent around polymer

Simulates an effective solvent around polymer

In general: $G(r) \alpha N^{\nu}$ Where N = Number of Monomers, $\nu = Flory exponent$

Polymer chains are selected from a distribution of possible configurations to construct a unit cell bulk.

Chains are then annealed under slow compression to allow diffusion and inner-penetration.

Density = 0.01 - 0.02 g/cc

Once annealing is complete, aggressive compression to target density.

Density = 0.02 - 1.1 g/cc

Build:

8 Identical Chains under periodic boundary conditions, Density = 0.01 g / cc

Model solution conditions via F factor. F = 0.1

Protocol:

- 1) Mixing: 1.0 ns compression under modeled solution conditions until Density = 0.025 g/cc
- 2) Compress: 1.0 ns compression to 1.1 * experimental density while ramping to real conditions (F factor = 1.0)
- 3) Relax: Allow 0.1 ns NVT relaxation at Density = 1.0 g/cc, T = 300 K
- **4) Release:** 0.5 ns equilibration under NPT, P = 1.0 atm, T = 300 K
- 5) Evaluate bulk density and free energy.

