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27 February 2012 Progress

Completed building structures with new method
for water insertions

Swelling ratios, water fragment analysis (for
percolation threshold)

Stress on water, polymer

Thermodynamics including chemical potential
of water



Swelling Ratio
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Hydrophobic swells more than hydrophilic. Most pronounced
difference 5-15%



Water Fragment Analysis in Hydrophobic and Hydrophilic System
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Hydrophobic system has an inflection point at 13%, hydrophilic at 15%
Suggests percolation occurs sooner in hydrophobic than hydrophilic
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Average Volume Per Water Molecule
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Volume per water molecule consistently larger in hydrophilic
structure. The relatively hydrophilic structure puts less stress
on the water, and thus they occupy a larger vo5lume



Water Stress
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Higher stress on waters in hydrophobic system. Stress on waters
reduced with increased water content in both. Tends toward 0.




Polymer Stress
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Hydrophobic continues resisting swelling even at 40% (stress on
polymer still increasing) Hydrophilic stops resisting at ~15% (stress
flattens out)

Suggests hydrophobic structure is stronger v




Total Thermodynamics in Hydrophobic System
Relative to Dry Bulk Polymer and Bulk Water
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Total (water + polymer) thermodynamics



Total Thermodynamics in Hydrophobic System
Relative to Dry Bulk Polymer and Bulk Water
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Total (water + polymer) thermodynamics



Total Free Energy in

Hydrophobic and Hydrophilic Systems
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Free energy lower in hydrophobic system after 12%
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Hydrophobic and Hydrophilic Systems

Total Entropy (-TS) in
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Chemical Potential of Water
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From numerical differentiation of water free energy

Identical in both systems. Decreases approximateiy linearly with
water content (tending toward the chemical potential of bulk water)
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Effective Solvent Construction Method:

F factor controls screening of non-bonded interactions.
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van der Waals = 4 x € [(;) - (2)6]

€ = interaction strength
o = effective atom size

q1 * q>
ExT
€ = dielectric constant (permitivity)

Electrostatic =

van der Waals = F x € . .
1 Simulates an effective solvent around polymer

Electrostatic — 7 *x €



Effective Solvent Construction Method:

Simulates an effective solvent around polymer
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Effective Solvent Construction Method:

In general: G(r) a NV Where N = Number of Monomers,
v = Flory exponent

()]

aussian chains have a Flory exponent of ~ 0.6.
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Effective Solvent Construction Method:

Polymer chains are selected from a distribution of possible
configurations to construct a unit cell bulk.
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Effective Solvent Construction Method:

Chains are then annealed under slow
compression to allow diffusion and
inner-penetration.

Density = 0.01 — 0.02 g/cc
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Effective Solvent Construction Method:

Once annealing is complete,
aggressive compression to target
density.

Density =0.02 - 1.1 g/cc
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Effective Solvent Construction Method:

Build:
8 Identical Chains under periodic boundary conditions, Density =0.01 g/ cc

Model solution conditions via F factor. F=0.1

Protocol:
1) Mixing: 1.0 ns compression under modeled solution conditions until Density = 0.025 g/cc

2) Compress: 1.0 ns compression to 1.1 * experimental density while ramping to real
conditions (F factor = 1.0)

3) Relax: Allow 0.1 ns NVT relaxation at Density = 1.0 g/cc, T=300 K
4) Release: 0.5 ns equilibration under NPT, P = 1.0 atm, T =300 K

5) Evaluate bulk density and free energy.






