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Atomistic to Coarse-grain 
forward/reverse mapping
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densities, cohesive energy, Rg, RDFs, viscosity, characteristic ratio



Justification
• Bonds and angles have characteristic time scales τ~10-13s 

and torsion τ~10-11s

• A polymer coil np<ne (Rouse model) needs at least x np2 
to equilibrate, i.e. np2/ω, and np3/(neω) for np≥ne 

(reptation model)

• PE has ne~100, therefore relaxation time for a chain with 
102≤np≤102 is τ~107-104s

• For low temperatures (near Tg) relaxation time may be 
much larger (macroscopic)

• DOW polymers considerably more complicated than PE
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Motivation

• Reduce the number of degrees of freedom

• Reduce the number of iterations

• Reduce the total cost per iteration (potential)

• Increase the time scale of simulations

• Smoother potential energy surface (artifact)
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Exact coarse-graining

• Given a potential V at a state point NpT

• Split system in “wanted” Rw and “unwanted” Ru 
coordinates 

• where Rw can be any set of coordinates: specific 
atoms, centers of mass or geometric center of 
atomic groups, distances between atoms, etc.
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Exact coarsening
• Convert ρw to a free energy Fw

• Strictly speaking, Fw,NpT only valid at N0p0T0, e.g. N0=
{Nw=100, Nu=1000}∴ Fw,NpT ⇒Nw/Nu=1/10

• Fw,NpT is NOT a potential so virial “pressure” ≠ 
thermodynamic pressure, and we simulate at〈V〉NpT
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Fw,NpT Rw( ) = −kBT logρw Rw( )
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n-body expansion
• Expand Fw in n-body terms for all w particles, w/

out loss of generality

• Summing over all particles, and using the infinite 
dilution approximation (potential of mean force)

• Leads to an effective PMF:
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Fw,NpT Rw( ) = F2 rij( )

i< j
∑ + F3 rij ,rik ,rjk( )

i< j<k
∑ + F4 rij ,rik ,rjk ,ril ,rjk ,rjl ,rkl( ) +

i< j<k<l
∑ …

 
Fw,NpT Rw( ) ≈ F2 rij( )

i< j
∑ + F3 rij ,rik ,rjk( )

i< j<k
∑ + F4 rij ,rik ,rjk ,ril ,rjk ,rjl ,rkl( ) +

i< j<k<l
∑ …

Fw,NpT Rw( ) ≈ Fp rij( )
i< j
∑

PMF r( ) = FConstra int S dS∞

r

∫
PMF determined from constrained 
inter-bead distance and monitoring 

the constraint force during MD



Effective pair potential: iterative 
Boltzmann inversion

• Simulate the (finer-grain) atomistic system

• Find RDF (gref(r)) between coarse-grain centers

• Use Fw as first guess potential:

• Determine RDF: g0(r)

• Iterate:

• Determine RDF: gi(r)

• Converged when gi(r) is close to gref(r)
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F0 r( ) = −kBT log gref r( )( )

Fi r( ) = Fi−1 r( ) + kBT log
gi−1 r( )
gref r( )

⎛

⎝⎜
⎞

⎠⎟



Graphic summary of 
iterative Boltzmann method
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Coarsening polymers

• Exact coarsening

• Non-bonded: use iterative Boltzmann inversion

• Bonded: use direct Boltzmann inversion

• May be complicated by multicomponent and 
solvent interactions, i.e. multiple target RDFs

• Alternative: use inverse Monte Carlo method
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Linking atomistic and coarse-
grain models: 3 choices

1. We want to reproduce: Structural Props

• Distribution of geometries

• Distances, angles, dihedrals, principal Rg, center of mass 
between chains, etc.

• Penalty function for automatic fits, e.g. inverted 
Boltzmann, RDFs

• where p is the parameter vector

f p( ) = w r( ) RDF r, p( )− RDFtarget r( )⎡⎣ ⎤⎦
2
dr

0

cutoff

∫
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Linking atomistic and coarse-
grain models: 3 choices

1I. Degree of coarsening

• How many atoms collected into one super-atom

• Incorrect number may lead to artifacts (e.g. melts 
near an interface)
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Linking atomistic and coarse-
grain models: 3 choices

A

B
C

Bond distribution Angle distribution

backbone dominates

sidechain dominates

1II. Mapping of super-atoms

• Coincident with real atoms or others, e.g. center of 
mass or geometrical center of grouped atoms

• Choice leads to different coarse-grain potentials

• Still, can be parameterized to reproduce structure

Sodium Polyacrylate 13



Diphenyl carbonate
Coarse-grain CM RDFs: 3-site, 2-site and 1-site models
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Preferences

• Choose bead positions that lead to rigid bonds

• Single peaked versus double peaked distribution

• Gaussian with height/width=bond strength

• Peak multiplicity leads to bond/angle potential 
interdependence

• Use spherical beads to avoid anisotropic potentials
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• Terminal (T=CH2-CH2-CH2) and middle (M=CH2-CH2-
CH2) beads

Polyetheylene coarse-grain 
model example
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Total energy (Dreiding)

Non-bonds have higher entropic contributions at >T

Polyetheylene coarse-grain 
model example

UTotal = Ubond
CG ri ,T( ) +Uangle

CG θi ,T( ) +Utorsions
CG ϕi ,T( )⎡⎣ ⎤⎦

i
∑ + Unb

CG rij ,T( )
i< j
∑

Ux
CG x,T( ) = −KBT lnPx

CG x,T( ) where x = bond, angle, torsion



Molinero-Goddard’s coarse-
grain water model

• 3 Morse parameters adjusted to reproduce 
experimental density, intermolecular energy, and 
diffusion coefficient of water at 300 K and 1 atm. 
Diffusion coefficient also considered (because of 
water transport in polymer film).
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J. Phys. Chem. B 2004, 108, 1414-1427

a) CRC Handbook of Chemistry and Physics, 81st ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 2000-2001. 
b) CODATA Key Values for Thermodynamics; Cox, J. D., Wagman, D., Medeyev, V., Eds.; Hemisphere Publishing Corp.: NY, 1984.



  

Coarse-Graining Polyethylene

● Suppose each bead 
contains 2 carbon atoms

● Rather than modeling 2 
carbons and 4 (or 5) 
hydrogens, consider 
one particle with mass 
28 (or 29)

● Place bead at center of 
mass of group of atoms 
it representsEx:  A small segment of a polyethylene chain

Atomistic model contains all carbons and 
hydrogens (gray and white).  Coarse grain
model contains only beads (green)



  

Coarse-Graining Polyethylene

● Suppose each bead 
contains 3 carbon atoms

● Rather than modeling 3 
carbons and 6 (or 7) 
hydrogens, consider 
one particle with mass 
42 (or 43)

● Place bead at center of 
mass of group of atoms 
it representsEx:  A small segment of a polyethylene chain

Atomistic model contains all carbons and 
hydrogens (gray and white).  Coarse grain
model contains only beads (green)



  

Representing Atomistic Dynamics 
With Coarse-Grained Particles

● Atomistic simulations of polyethylene for 1 or 3 
chains of 300-mers (with or without water)

● Use standard CED polymer equilibration method 
(heat while expanding, contract while cooling, 
relax volume)

● Further NVT dynamics on equilibrated structure
● From this trajectory, calculate bead positions at 

each frame (every 500ps) (movie)
● Fit bonds, angles, dihedrals, nonbond 

interactions to atomistic energy expression via 
distributions (described on following slides)  



  

Fitting Coarse-Grained Parameters

● Note: The distributions showed no sensitivity 
to the number of chains or the presence or 
absence of water; thus, only one set of 
distributions is shown in the following slides.

● We see multiple peaks in the distributions 
because the distance, angle, and dihedral 
between beads can vary with the conformation 
of the underlying atomistic structure



  

Bond1

Bond2

Bond1

Bond2
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Angle1

Angle2

Angle3

Angle1
Angle2

Angle3



  



  

Non-bond Interactions 
(2 C Per Bead)

● Get van der Waals interaction of 
beads from that between atomistic 
models of two beads

– e.g.: Consider the net pairwise 
interaction between two ethane 
molecules (representing beads 
of 2 carbons each)

● Attach centers of mass of the two 
molecules by a spring, do 
dynamics to let the molecules 
adjust to each other.

● Slowly decrease distance 
between beads

● Fit a Morse function to E(r)



  

Too repulsive

Fitting to one Morse function gives us a potential that is too 
repulsive at small r and at 10 < r < 6 Angstrom.  It is also too 
attractive (by ~1 kcal/mol) for r > 10 Angstrom

Too attractive



  

Fitting 2 Morse functions, one in the repulsive region (say r < 6, green plot) 
and one for the attractive region (say 6 < r < 20,blue plot) gives a much 
better overall fit.  Of course, we must enforce continuity of the potential.



  

Non-bond Interactions
(2C Per Bead)

● Get van der Waals interaction 
of beads from that between 
bead, water

– e.g.: Consider the net 
pairwise interaction 
between an ethane 
molecule and a water

● Attach centers of mass of the 
two molecules by a spring, do 
dynamics to let the molecules 
adjust to each other.

● Slowly decrease distance 
between beads

● Fit a Morse function to E(r)



  

Too repulsive

Too attractive

Same problem with a single Morse function for the water-bead 
nonbond interactions



  

And again fitting to 2 Morse functions gives a much better fit



  

Coarse-Graining DOW Latex

● Choose bead assignment (see next slide)
– 6 bead types: Acrylate, Methacrylate, “End butyl”, 

“Middle butyl”, methyl, methacrylic acid

● Map coarse-grained model onto atomistic 
trajectory (NVT for equilibrated system)

● Extract distribution of bead bonds, angles, 
dihedrals



  

“end butyl”
EB

MA

MAA

“middle butyl”
MBA

Yellow dots show bead 
positions.  Color-coded circles 
show atoms in each bead



  

Atomistic                     Coarse-Grain
Hydrophobic system

Atoms: 28670        Beads: 2916
Bonds: 28666                                        Bonds: 2912
Angles: 54924                                        Angles: 4615
Dihedrals: 77742                                   Dihedrals: 5600



  

We may ultimately use the RDF to 
validate or fit our coarse-grain 
model.

As expected, fine detail (r < 2 
Angstroms) is lost going from 
atomistic → coarse grain



  

Bond Distributions

● Make histograms of bond lengths for each 
bond type (shown in red on following slides)

● Want a smooth potential, so use boxcar 
averaging (green)
– “Rough” potential → large derivatives → large 

forces → unstable dynamics



  



  

EB MB2 MB1



  

MAA's very rare, thus 
distributions aren't very 
smooth



  

Raw distribution Smooth distribution

Potential

Boxcar 
averaging

Boltzmann
inversion

Distribution to 
potential for 
phobic MB-
MB Bonds



  

Angles

● 46 angle types
– For practical purposes when writing the code, ABC 

angles are treated distinctly from CBA angles

● The following slides show a few representative 
cases

● The important thing to note here is that these do 
not look like the distributions arising from a 
harmonic angle potential

● Use Boltzmann inversion here as well



  



  



  



  

Raw distribution

Boxcar
averaging

Smooth distribution

Boltzmann 
inversion

Potential

Distribution to 
potential for Phobic 
MA-MA-MA Angles



  

Dihedrals

● 140 angle types
● The following slides show a few representative 

cases
● The important thing to note here is that these 

do not look like the distributions arising from a 
standard dihedral potential

● Use Boltzmann inversion here as well
● Note that almost all possible values of the 

dihedrals are sampled. 



  



  

Distribution to potential 
for Phobic MA-MA-MA-
MA Dihedrals

Raw distribution

Smooth distribution

Boxcar
averaging

Boltzmann 
inversion

Potential



  

Non-bond Interactions 

● Get van der Waals interaction of beads from 
that between atomistic models of two beads

● Attach atoms representing bead location by 
a spring, do dynamics to let the molecules 
adjust to each other.

● Slowly decrease distance between beads
● Fit a Morse function to E(r)



  

Too repulsive

Too attractive



  



  

Ongoing Work

● All bond, angle, dihedral potentials prepared
● All nonbond coefficients (piecewise, 2 Morse 

functions) fit
● Currently testing force field (compare density, 

rg, rdf to atomistic)


