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The Effect of Surface Oxygen Concentration on the
Thermodynamics and Kinetics of Oxygen Penetration (Zr)
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Concentration Reactant TS Product (unit: eV)
25 % 0.0 0.68
50 % 0.0 ~1.9 0.39
75 % 0.0 ~1.5 0.06
100 % 0.0 ~1.0 -0.65

Thermodynamically unfavorable for O to penetrate below 100%

Will look at additional layers below the surface




eFF Effective Core Potentials (ECP)

eFF-ECP describes core-valence Pauli interaction,
proportional to the overlap between two wave-packets,
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Two types of ECPs developed (and supported in LAMMPS):
1. s-s overlap (e.g. Na, C, Al, S1) — 3 parameters
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2. s-p overlap (e.g. C, N, O) — 6 parameters
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eFF-ECP e.o. atom representations

| * Reduced number of DOF

* Filters high-frequency core vibrations

* Larger systems and longer timescales Aluminum
S core

\ with valence
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15 particles per Si!



Si eFF-ECP Pseudopotentials
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O-ECP in lone pairs with ionic vs.
covalent bonding

From ionic to covalent bonds

Li,0 H,Si-O-SiH, H,Si-0-SiH,-0-SiH, {0-SiH,), SiH,OH H,0
(<Li-O-Li = 180°) (<Si-0-Si = 177.9°) (<Si-0-Si = 158.5°) (<Si-O-H = 131.7°) (<Si-O-H = 119.2°) (<H-O-H = 104.5°)
eFF-ECP: 180° eFF-ECP: 179.8° eFF-ECP: 158.0° eFF-ECP: 121.1° eFF-ECP: 115.7° eFF-ECP: 104.6°

Decreasing Oxygen-centered angle increases covalent bonding (larger repulsion with lone
pairs). Focus of ECP is on geometries (angles and bond lengths).

Expt. 161.0 163.7 164.4/163.5 165.9 165.9 96.1
eFF-ECP 163.2 165.4 165.0/165.2 171.6 167.3 127.4
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O-ECP flexibility of Si-O-Si angle in SiO,

846 K 1140 K . _ 2010K . _ 7.5~85GPa .
(a-quartz — B-quartz —— B-tridymite —— B-cristobalite) > stishovite

Ground state

140.2°
129.3°

180.0° 106.3° 98.4°/130.8°
179.8° 98.6° 99.9°/130.0°

Si-O-Si angle from PBE and eFF-ECP

Si-O bonds in silica possess mixed ionic and covalent nature, and cause a wide range of Si-
O-Si angles adopted in various phases. eFF-ECP is able to capture such subtle changes,
which demonstrates its capability of describing lone pairs.
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Silica Slab Equilibration at 300 K

* Alpha-quartz (001) surface was used, with hydrogen
saturating all dangling bonds at both surfaces (oxygen
terminated).

* The slab was constructed with dimensions of 46.3 x 48.1 x
42.5 Bohr (the last value is the thickness), with z direction
non-periodic and of vacuum.

e Currently we are running nvt equilibration at 300 K (for ~0.1
ps), and the structure is stable.



Snapshot of Silica Slab at 300 K
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Next

Kinetic rates as a function of surface/layer
coverage, for both Ti and Zr

Dynamics with ReaxFF on Ti and Zr oxidation
kMC approach
SiO2 dielectric breakdown



