Metal Oxidation

Mu-Jeng Cheng, Qi An, Hai Xiao Andres Jaramillo-Botero and William A Goddard III

Thursday Nov 19, 2012

CALTECH-INTEL

Surface coverage

The Effect of Surface Oxygen Concentration on the Thermodynamics and Kinetics of Oxygen Penetration (Zr)

Concentration	Reactant	TS	Product (unit: eV)		
25 %	0.0		0.68		
50 %	0.0	~1.9	0.39		
75 %	0.0	~1.5	0.06		
100 %	0.0	~1.0	-0.65		

Thermodynamically unfavorable for O to penetrate below 100%

Will look at additional layers below the surface

eFF Effective Core Potentials (ECP)

eFF-ECP describes core-valence Pauli interaction, proportional to the overlap between two wave-packets,

$$E_{core-val} \propto S^2$$

Two types of ECPs developed (and supported in LAMMPS): 1. s-s overlap (e.g. Na, C, Al, Si) – 3 parameters

$$E = a \exp\left(-\frac{br^2}{c+s^2}\right)$$

2. s-p overlap (e.g. C, N, O) – 6 parameters

Andres Jaramillo-Botero, Caltech

Si eFF-ECP Pseudopotentials

Andres Jaramillo-Botero, Caltech

Decreasing Oxygen-centered angle increases covalent bonding (larger repulsion with lone pairs). Focus of ECP is on geometries (angles and bond lengths).

bond length (pm)	Li ₂ O	H ₃ Si-O-SiH ₃	H ₃ Si-O-SiH ₂ -O-SiH ₃	(O-SiH ₂) ₃	SiH ₃ OH	H ₂ O
bond type	Li-O	Si-O	Si-O	Si-O	Si-O	H-O
Expt.	161.0	163.7	164.4/163.5	165.9	165.9	96.1
eFF-ECP	163.2	165.4	165.0/165.2	171.6	167.3	127.4

Andres Jaramillo-Botero, Caltech

O-ECP flexibility of Si-O-Si angle in SiO₂

 $(\alpha$ -quartz $\xrightarrow{846 K} \beta$ -quartz $\xrightarrow{1140 K} \beta$ -tridymite $\xrightarrow{2010 K} \beta$ -cristobalite) $\xrightarrow{7.5 \sim 8.5 GPa}$ stishovite

Ground state

Si-O-Si angle from **PBE** and **eFF-ECP**

Si-O bonds in silica possess mixed ionic and covalent nature, and cause a wide range of Si-O-Si angles adopted in various phases. eFF-ECP is able to capture such subtle changes, which demonstrates its capability of describing lone pairs.

Andres Jaramillo-Botero, Caltech

Silica Slab Equilibration at 300 K

- Alpha-quartz (001) surface was used, with hydrogen saturating all dangling bonds at both surfaces (oxygen terminated).
- The slab was constructed with dimensions of 46.3 x 48.1 x 42.5 Bohr (the last value is the thickness), with z direction non-periodic and of vacuum.
- Currently we are running nvt equilibration at 300 K (for ~0.1 ps), and the structure is stable.

Snapshot of Silica Slab at 300 K

Next

- Kinetic rates as a function of surface/layer coverage, for both Ti and Zr
- Dynamics with ReaxFF on Ti and Zr oxidation
- kMC approach
- SiO2 dielectric breakdown