NOTES

Alkali oxide diatomics: Explanation of the change in ground state symmetry from LiO(2II) to CsO(2Σ+)^a

Janet N. Allison¹¹ and William A. Goddard III

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125

(Received 7 May 1982; accepted 25 June 1982)

Generally, there is close correspondence in the ground symmetries of molecules as an atom is replaced by others in the same column of the periodic table. An exception to this occurs with the alkali oxides where LiO has a 2II ground state,¹ whereas CsO has a 2Σ⁺ ground state.² In this paper we report a series of <i>ab initio</i> calculations [including extensive configuration interaction (CI)] designed to elucidate the bonding in these systems and to explain this reversal.

We find that the wave functions can be accurately characterized in terms of an ionic description M'O[−]. There are two ways of orienting the O[−], leading to 2II and 2Σ⁺ states that are within 0.3 eV of each other for all alkali metals M. In contrast, for a covalent bond as in HO, the ground state would clearly be 2II, with the 2Σ⁺ state very high in energy (4.05 eV for HO).

For the 2II and 2Σ⁺ states, we carried out CI calculations allowing all single and double excitations (to all virtual orbitals) from the seven valence electrons of the self-consistent HF wave functions at each internuclear separation <i>R</i>. The basis set⁶ was of optimized valence double zeta form for M and O but with optimized polarization functions (3d) and diffuse functions on the O. The results are summarized in Table I.

For LiO and NaO we find that the 2II state is much more stable than 2Σ⁺ (by 2634 and 2177 cm^{−1}, respectively). This is consistent with electric deflection and magnetic deflection scattering experiments, also indicating a 2II ground state.¹⁴

For CsO we find that the 2Σ⁺ state is 846 cm^{−1} below 2II, in agreement with ESR and reactive scattering studies that also lead to a 2Σ⁺ ground state. We also find RbO to have a 2Σ⁺ ground state; however, the energy splitting is small, 114 cm^{−1}. ESR studies were consistent with RbO; however, the spectra were too weak for a clear-cut assignment.⁸

For KO we find a 2II ground state (by 831 cm^{−1}). This is also consistent with experiment since no ESR signal was observed.⁵

Previous calculations on the 2II-2Σ⁺ splitting of alkali oxides have been carried out mainly at the HF level. For LiO, Yoshimine² and Grow and Pitzer⁸ find the 2II state to be favored by 2330 cm^{−1} (CI) and 3065 cm^{−1} (HF), respectively. For NaO, O’Hare and Wahl⁷ report a 2II ground state with 2Σ⁺ at 1613 cm^{−1} (HF). So and Richards⁸ reported HF calculations on NaO, KO, and RbO. They find a 2II ground state for NaO by 1236 cm^{−1} but 2Σ⁺ ground states for KO (by 347 cm^{−1}) and for RbO (by 606 cm^{−1}). Our calculations differ from these in that we use highly correlated wave functions and that we include diffuse functions on the O. Omitting the diffuse functions on the O causes the bond distance to decrease and the vibrational frequency to increase.

Singles and doubles CI calculations do not yield reliable values for homolytic bond energies; however, for an ionic species such as M'O[−], this type of calculation should yield quite reliable values for the heterolytic bond energy to M⁺ and O[−]. Consequently, the homolytic bond energies quoted in Table I are based on the calculated dissociation energy to M⁺ and O[−] corrected by the experimental electron affinity of O and ionization potential for M. An illustration of the accuracy of this cor-

8(a) These delay times correspond roughly to the peaks in the time-of-flight distributions for both fragments on-axis; (b) Photoion collection efficiency is a weak function of the position of the probe. The data given have been corrected for this effect.

9B. H. Rockney and E. R. Grant (to be published).
TABLE I. Spectroscopic properties (ground state denoted by g). Experimental values are from Refs. 9–12.

<table>
<thead>
<tr>
<th></th>
<th>Bond energy (eV) of ground state</th>
<th>Vibrational frequency (cm$^{-1}$)</th>
<th>Bond distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory</td>
<td>$^g\Pi$</td>
<td>$^g\Sigma$</td>
</tr>
<tr>
<td>LiO</td>
<td>2.40a</td>
<td>3.08</td>
<td>3.49b</td>
</tr>
<tr>
<td>NaO</td>
<td>2.55a</td>
<td>2.28</td>
<td>2.61b</td>
</tr>
<tr>
<td>KO</td>
<td>2.03a</td>
<td>1.93</td>
<td>3.63a</td>
</tr>
<tr>
<td>RbO</td>
<td>2.15a</td>
<td>2.16a</td>
<td>399f</td>
</tr>
<tr>
<td>CsO</td>
<td>2.06a</td>
<td>2.14a</td>
<td>236f</td>
</tr>
</tbody>
</table>

aBased on singles plus doubles CI and including zero point energy.
bReference 9.
cReference 10.
dFirst vibrational transition ω_4. All experimental values are based on matrix studies.
eReference 11.
fReference 12.

Curvature at R_e from cubic spline fit to potential curve.

The essence of our explanation of the shift in ground state symmetry can be grasped by considering the energy curves for purely ionic wave functions, as shown in Fig. 1 for LiO and CsO. In all cases, $^g\Pi$ is favored at longer distances, while $^g\Sigma$ is favored at shorter distances, leading always to a crossing of the $^g\Sigma^-$ and $^g\Pi$ states. The reason that $^g\Pi$ is lower at larger R is the greater electrostatic attraction caused by the orientation of the oxygen ion. In the $^g\Sigma$ state, the orientation of the oxygen ion is such that the quadrupole terms are repulsive (the hole is in the p_σ orbital). However, in the $^g\Pi$ state, the quadrupole terms are attractive (the hole is in the p_σ orbital); thus lowering this state relative to the $^g\Sigma$ state.

Calculated bond distances, vibrational frequencies, and bond energies are shown in Table I and compared with experimental values.

The reason that $^g\Sigma^+$ is lower than $^g\Pi$ at shorter R is due to Pauli repulsion effects arising from orthogonalizing the Op_σ orbital to the M^+ core. This term becomes important for small R and is roughly twice as large for $^g\Pi$ than for $^g\Sigma^+$ due to the presence of two electrons in the p_σ orbital for $^g\Pi$ and only one for $^g\Sigma^+$.

The equilibrium bond distance is determined by a balance of the attractive $1/R$ electrostatic term and the repulsive Pauli orthogonality term. As we move down the periodic table, the M core becomes larger, leading to a larger bond distance and hence a smaller bond energy. Indeed, the total bond energy scales roughly as $1/R_e$, so that the effective Pauli repulsion term (at R_e) scales as $1/R_e$. However, the $^g\Sigma-^g\Pi$ splitting involves a balance between Pauli repulsion (scaling as $1/R_e$) and a quadrupole term that scales as $(1/R_e)^3$. Thus, at R_e the $^g\Sigma^+$ state should be stabilized with respect to $^g\Pi$ as we move down the column.

Summarizing, the change in stability of $^g\Sigma^+$ with respect to $^g\Pi$ occurs because the balance between Pauli repulsion (favoring $^g\Sigma^+$) and quadrupole interactions (favoring $^g\Pi$) is shifted toward the Pauli repulsion terms (and hence $^g\Sigma^+$) as we go to metal ions with larger cores.

Previously it has been suggested that the reversal of $^g\Pi-^g\Sigma$ ordering from LiO to CsO might be the result of interactions of the alkali inner shell electrons with the O^- or might be due to the more polarizable nature of the core electrons of Cs and Rb. The fact that we
obtain the same results for ionic wave functions obtained from atomic M^+ combined with atomic O^- shows that these effects cannot be responsible for the reversal.

aSupported in part by a grant (No. DMR79-19689) from the National Science Foundation.

bFannie and John Hertz Foundation Predoctoral Fellow.

cContribution No. 6638.

Millimeter and submillimeter spectrum of NO$^+$

Wayne C. Bowman, Eric Herbst, and Frank C. De Lucia

Department of Physics, Duke University, Durham, North Carolina 27706

(Received 18 June 1982; accepted 7 July 1982)

In this letter we report the detection of the pure rotational absorption spectrum of the molecular ion NO$^+$ by means of millimeter and submillimeter microwave spectroscopy. This species is one of a very small class of molecular ions that have been detected by high resolution microwave techniques. 1 This class would be even smaller if those species originally identified and measured by radioastronomical techniques were excluded. The detection of NO$^+$ was made possible by the combination of the high sensitivity of our experimental technique and the development of a new molecular ion production method that increases ion concentrations by two orders of magnitude. Also of considerable value were the excellent frequency predictions derived from the optical work of Alberti and Douglas. 3

We have previously reported the details of our millimeter and submillimeter spectroscopic techniques. 3 For this experiment NO$^+$ was produced in a 5 ft long, $1 \frac{1}{2}$ in. diameter glass tube cooled to liquid N$_2$ temperature. In this cell a discharge current of ~5 mA was maintained by a potential of 5 kV applied to a mixture (5:1) of NO and Ar at a total pressure of a few mTorr. A solenoid was wrapped around the cell so that axial magnetic fields of up to 200 G could be applied. In the initial testing of the cell, we found that signals from the previously observed ions HCO$^+$, HN$^+$, and CO$^+$ were enhanced by a factor of 100 upon the application of the magnetic field. Although NO$^+$ is much weaker (HCO$^+$ is several hundred times stronger), it appears to experience a similar enhancement. This enhancement is strongly dependent on the discharge mode. Part of the reduced signal strength of NO$^+$ can be attributed to its substantially smaller dipole moment, which Junger and Lefebvre-Brion 4 calculate to be 0.68 ± 0.38 D and Billingsley 5 calculates to be 0.31 D. With this range of values, an estimated fractional NO$^+$ concentration in our cell of 10$^{-4}$ can be obtained.

Figure 1, a tracing of the $J=1-2$ transitions of NO$^+$ at 238 381–238 386 MHz, clearly shows the quadrupole structure due to the nitrogen nucleus. The transition frequencies measured in this experiment are contained

![FIG. 1. The $J=1-2$ transitions of NO$^+$. Frequency increases from right to left.](image-url)