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Evidence of hexatic phase formation in two-dimensional Lennard-Jones binary arrays
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We report evidence of the hexatic phase formation in Lennard-Jones binary substitutional random arrays
from isothermal-isobaric molecular-dynamics simulations. The hexatic phase is analogous to those predicted in
Kosterlitz-Thouless theory of melting that is characterized by short-range translational order and quasi-long-
range orientational order. At the crystal to hexatic phase transition, dislocation pairs are observed to unbind
into isolated dislocations. Further disordering of the hexatic phase, however, does not lead to dissociation of
dislocations into disclinations. Instead, the dislocations become clustered and form dislocation networks which
results in formation of amorphous phasg30163-18206)02741-3

Melting in three dimensions is known to be a first-ordersystems 1% These studies have shown that dislocation
transition where the sharp Bragg peaks of the crystallinalensities increase precipitously during heating and more
phases abruptly become flat and smeared out. In two dimercomplex defects such as grain boundaries and dislocation
sions(2D), the long-range translational order of a crystallineaggregates usually form at the elevated temperatures. These
phase is destroyed spontaneously by fluctuations of longresults seem to contradict the theory of 2D melting which
wavelength phonon modes, leaving it with quasi-long-rangeassumes that dislocations are relatively sparse and that at
translational ordefpower-law decaying! It was proposed melting, dislocation pairs unbind to form simpler, more el-
by Kosterlitz and ThouledgKT) that melting in two dimen- ementary defects such as isolated dislocations and disclina-
sions is a topological order-to-disorder transition that protions. To mimic the conditions under which the hexatic
ceeds via dislocation pair unbinding. According to thisphase is expected, more repulsive interatomic poteftials
theory, the liquid phase is a phase containing a certain fradiave been used. But only in the case where the dislocation
tion of isolated dislocations. Further analysis suggested thatore energy is explicitly manipulated in a dislocation vector
isolated dislocations alone can indeed destroy the quasi-longrodel have formation of hexatic phases been observed
range translational order in 2D crystalline phases, but leavesnambiguously?
the long-range bond-orientational order intAcEherefore, In this work, we chose a different path to study the
the liquid phase defined by Kosterlitz and Thoufeess hexatic phase formation by introducing disorder to a 2D
short-range translational order and quasi-long-range orientarystalline phase. First, instead of heating it, we choose to
tional order. According to Nelson and HalpefliH),2itisa  alloy two types of atoms by mixing one into another under
liquid-crystal-like phase, the hexatic phase. The true liquidconstant pressure and temperature. A similar procedure was
phase having short-range translational and orientational otaken by Nelson, Robinstein, and Spa€pem investigate
der forms when the isolated dislocations in the hexatic phaskond-orientational order in binary arrays made of steel balls.
further unbind to form isolated disclinations. Therefore, it isIn this experiment, larger balls of two different sizes were
possible for 2D crystalline phases to melt continuously viaintroduced into the matrix of smaller ones. The equilibrating
such two consecutive defect-unbiding processes involving aand temperature effects were simulated by mechanically vi-
intermediate hexatic phase. brating a flat tray containing the mixture of balls. They found

The defect-unbinding theory for 2D meltifid has drawn  that dislocations were created around the bigger balls when
enormous attention in the past decadeThe hexatic phase their nearest-neighbor coordinates deviate from those of the
has been found in liquid crystalline phases, Coulomb gasesiexagonal lattice. At higher concentrations of the bigger
and vector dislocation model€ However, it has long been balls, the hexatic phases as characterized by quasi-long-range
debated whether hexatic phase exists for systems made ofientational order and short-range translational order were
atoms interacting with pair-wise interactions such as hardeported to form.
sphere and Lennard-Jon@sJ) potentials>~® The consensus, With molecular-dynamic$MD) simulations, we can sys-
largely due to extensive computer simulations in the pastematically investigate topological order and thermodynamic
decade, is that the hexatic phase is unlikely to exist in thesproperties for binary arrays made of atoms interacting with
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eters. The former is defined as K& Nps(r;), where pg(r;)
=exdiG-r;]. The latter is defined as (U= N¥(r;) (Ref. 23,
where ‘I’(ri):(1/NNN)Z;\‘NN¢6(VU)~ and ig(rij) =exdimé(r;;)],
wherem=6. Ny is the number of the nearest neighbors of atom

L . . . and(rj;) is the angle of the nearest-neighbor bangdwith respect
realistic interatomic potentials. The binary arrays to be stud;, .« reference axis.

ied are made of atoms interacting with Lennard-Jones poten-
tials,
( O-aﬁ) 12 . . . . .

- S(r), (1) introduces disparity to the local packing in the host crystal-

r line latticel® This size difference causes changes in inter-

where a and 8 denote the two atomic species, and atomic interactions among the atoms within the potential cut-
B. S(r) is the cubic spline switch function defined as offs. After relaxation, it leads to local distortion in atomic

positions and strain fields on the lattice, both of which con-

FIG. 1. Phase diagram in parameter spdaex) at T=0.2
(<Ty=0.22 andP=0.0 for the 2D LJ binary arrayX marks the
phases simulated using MD.

close-packed, lowest energy configuration in 2D, substitution
with solute, or impurity atoms, with different atomic size

¢aﬁ(r): _4601,8

6
Jap
r

1, r<r, tribute to increase of free energies of the disordered binary
(r—r )23 =1y~ 2r) arrays. As more and more solute atoms are introduced, dis-
S(ry={ 1- L ¢ 31 . r<r<rg, tortions become more acute and the crystalline lattice be-
(re=ry) comes softer. Eventually, under the combined effects of tem-

0, r<r, perature(atom vibration and the lattice softening, the local

sixfold symmetry of the atoms with nearest neighbors of

wherer.=2.45 andr,=1.90r are the cutoff distance and different sizes is broken and disclinations are generated. As
the distance at whicB(r) is switched on, respectivelyris = shown below, the binary arrays with the simplest choice of
the LJ parameter defined below&(r) is used to ensure interatomic potential parameters can have the same topologi-
smoothness of the potentials at the cutoff distances and teal defects as those in a pure LJ solid at melting.
reduce statistical errors for long simulatiofs. Compared with the monoatomic systems, the binary ar-

The two types of atoms are chosen such that they differays have an additional degree of freedomthat we can
only in sizes. This is achieved by introducing the atomic sizeutilize to avoid defect clustering which is a direct competing
ratio, a=Rg/R,, whereR, and Rg are the atomic radii of process with defect unbinding. The alloying process takes
the two types of atomsi and B. For the LJ binary array, place while the binary mixtures are kept at constant tempera-
a=ogpglopn, Whereogg andopp=o are the parameters for tures below the glass transition temperatiige Here T is
A-A and B-B interatomic LJ potentials. Furthermore, the determined previously by quenching the corresponding bi-
depths of the LJ potentialg,», €xg, andegg, are set equal nary liquids using constant pressure MD with quench rate of
to € in order to avoid chemical short-range ordering or clus-10° K/s. At such low temperature, it is difficult for defects to
tering resulting from differences in those parameters. For theggregate through long-range diffusion. The defects, once
interaction between A and B atoms, we take generated, are then pinned, or frozen. Therefore, by alloying
oap=(oaat ogp)/2. At given pressure and temperature, thetwo different types of atoms, we have possibilities to observe
binary array is therefore completely specified by only twohexatic phase formation and crystal to amorphization transi-
parameters, the atomic size ratiowhich is determined by tion by traversing the crystal-hexatic phase boundary as we
the relative sizes of the two types of atoms and the relativehange the relative atom concentratiorat constant tem-
concentration of the mixtune=Ng/(N5+ Ng). HereN, and  perature.
Ng are the numbers ok andB types of atoms in the array. Starting from a pure LJ crystal made of bigger atoms on

Defects in the binary array are generated primarily bythe hexagonal lattice, we prepared the substitutional arrays
atomic size difference. Since the hexagonal lattice is the onlpy either randomly replacing them by the smaller ones with
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1.00r FIG. 4. The exponent of the algebraic decaying translational
0.90 order correlation function determined using ).
0.80 _
0.70k about 0.22 for these arrays. Results for other systems with
3 different size ratios are summarized briefly in Fig. 1. As
6/\‘ 0.60F shown in the phase diagram, there are three distinctive
F 0.501 phases in the 2D binary arrays in different regions when
= 0.40 a<a.=0.82, crystalline, hexatic, and amorphous. They are
¥ 0.30[ characterized by different translational and orientational or-
= 0.

der. As shown in Fig. 2, the average translational and orien-
tational order parameters for those arrays with0.75 show
three regions corresponding to the three different phases. The
hexatic region begins at=0.20 where the translational order
parameter is almost zero, but the orientational order param-
eter is still finite. At higher concentrations, one observes

X slow decrease of the bond orientational order.x4£0.40,

both order parameters become nearly zero.
FIG. 3. (a Translational order correlation function AS shown in Fig. &), the translational order correlation

(p&rPpG(0)) and (b) orientational order correlation function functions in the pure LJ solid decay algebraically with dis-

(% (1) 5(0)) for LJ binary arrays with 1764 atoms. tance. This quasi-long-range order in translational symmetry
is due to fluctuations in long-wavelength phonon maotiés.

the relative concentratioxat each given atomic size ratig In contrast, the orientational order correlation function re-
or by varyinga of the binary mixtures at a given We used mains a constant close to unity as predicted in the theory of
both methods for samples made of 1024, 1764, 2500, ahd 10

atoms and found no significant difference in the results.

0.20f
0.10f
0.00f
-0.100' -

(b)

Thermodynamic and structural properties of the binary SR
substitutional random arrays were obtained using constant 300¢ 100 N 7
pressure and temperature MD methd¥5. Technical details \\ osof 1]
for the simulations can be found in Ref. 17. Here, we only 2501 o / 1
briefly mention some additional procedures unique for the __ . \ ,I e 1 3
binary arrays. First, a relatively long simulation time is fm 200+ o Bouf Y 1
needed for equilibration since the arrays are at low tempera- x F \ oaop" 1]
ture. It usually takes about 10MD steps for each array. Zz 150 “\ ok 1 4
When the arrays are close to the hexatic phase boundary, it x F R T T YR vy N
was necessary to carry out extremely long simulati@psto 100 \ X -
10’ MD time step$ to obtain thermodynamic properties. n . .
Second, we performed configuration averages on the thermo- 50 \=\ |
dynamic properties, in addition to the time averages. About C ®—o—° hg
5-10 different configurations of binary array that have dif- oo Lo b s L b u
ferent initial random distributions of small atoms were used 0.00 010 0.20 0.3 0.40 0.50
for the configuration averages. X

In the following, we present our results using isothermal
and isobaric MD simulations of the binary arrays with  FIG. 5. The Kosterlitz-Thouless constastis the total area of
@=0.75 atT=0.20 (in reduced LJ unitsand P=0.0.T, is  the 2D arrays. The dotted line is #6The inset is the Poisson ratio.
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FIG. 6. Atomic configurations of defects &) x=0.15, (b) x=0.20, (c) x=0.25, (d) x=0.30, and(e) x=0.50. The crosses denote five
nearest-neighbdNN) disclinations, the plus signs are 7NN ones, and the asterisks are 8NN ones. A 5NN disclination and a nearest-neighbor
7NN disclination form an edge dislocatigRef. 18. The bigger atoms are represented as circles and smaller atoms as squares.

2D melting® As shown in Fig. &), it becomes algebraically whereu and\ are the Lameonstants that are related to the
decaying once th8 atoms are alloyed into the matrix &  isothermal elastic constants. The elastic constants are calcu-
atoms. At the hexatic phase boundéxy=0.20, the correla-  lated directly in our simulations by utilizing fluctuations of
tion function of translational order parameters decays to zerghe MD cell shapé®!’ G is the shortest reciprocal-lattice

at a distance approximately close to the fourth-nearest neighvector in the hexagonal lattice. As shown in Figb)3 the
bors; while the orientational order correlation function still correlation functions for the bond-orientational order param-

remains quasi-long-range. The later remains finite until eters decays gss(r)~r~ 7 with exponentsy, that remain
reaches 0.4 where both order correlation functions becomgg|ow the limiting value 1/4Ref. 3 for x<0.40 in the

short ranged.

As predicted by the theory of 2D melting the power-law
decay of the translational correlation of the crystalline solid
phasepg(r)~r~ "¢, has an exponenjg that cannot exceed
1/32 Indeed, our results show that it approaches this limitin
value as the hexatic phase boundary is reackagl 4). The
exponents can be obtained by either fitting the correlatio
functionspg(r) or using the resuit

hexatic phase before the amorphous phase forms.
Thus far, the results presented above suggest that the tran-
sition at x~0.20 leads to a hexatic amorphous phase. As
roposed in the KTNHY theor§? it should involve disloca-
gEi)on pair unbinding to form a certain fraction of isolated
Ifriislocations. Such a process can be measured by the disloca-
tion coupling constant, or the Kosterlitz-Thouless constant,

_|G|2|(BT 3ut\ ) B 4a? p(pw+X\)
1T T A w2ptN)’ @ " kgT (2u+N)’

()
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wherea is the lattice parameter. At the transitidd,should  to form network chain, or grain-boundary-like configurations
approach an universal constant;m @lue to screening effects first and become clustered later, as shown in Figd) é&nd
on the shear elastic modulus from presence of othef(e). This trend continues until the amorphous phase forms.
dislocations’ Figure 5 shows the dislocation coupling con- It appears that the hexatic phase “melts” and becomes an
stant versus concentration at=0.75 calculated using Eq. amorphous phase when the dislocation network chains, or
(3). At the transition, one sees clearly tha@pproaches this grain-boundary-like defect complexes proliferate. Chir
value within 5% of the standard deviatioHdlt levels off in  his grain-boundary-mediated melting theory predicted such a
the hexatic phase and becomes almost flat in the amorpho@§€nomenon. But he predicted a much sharper transition
phase. In contrast, it becomes zero immediately at meitinghan the one we observed here. =
Additional evidence for the formation of the hexatic phase We_ aIs;p observeq a first-order ”.‘e'““gv or ~amor-
is from visual observations of the atomic configurations ofph'zatz'?n' _at_thg equimolar con_centratuxn:O.S upon vary-
defects. Such observations however, can be misleading if thgd & TIE'OS TI'Shm agree_r_nent wnE_the e_arly_ repgrt by B_Oﬁ'
conditions of the observation are not specified clearly. quuet etal. e transition at this point is abrupt wit
example, an evolving atomic configuration during a phasé:hanges in both order parameters and also in enthalpy and

transition can be mistaken as the equilibrium configurationV0|ume' In contrast, the amorphization involving the hexatic

of a new phase if one does not specify the time span of thggas;znlqs(lz?on{')nvlégusseénﬂ?alllt :Es #erggt?ét'eﬁé;r?én ig:]e E;;us_e
shapshot. In our work, we mapped out the configurations o 9 9. P glong

dislocations and disclinations using nearest—neighboa% Z{QS{EZ str?%“é?itﬁtrgrsn:rg'ﬁeo?e'ﬁséﬁggﬁt?aeé%mﬁfa?;ﬁilfnr
coordinates? This is usually done using Voronoi polyhe- we found that the transition become more abru t.at elevated’
dron construction. In a binary array with large atomic size P

21
difference, the Voronoi technique is not reliable. Instead, Wgtﬁumnpde;ﬁgrzissﬁ)téz\tl%ﬁ ur?k:iL?jvivnterl?gfor%tg;d\-/refo.dligi,c\lljvlf be-
used Fisher and Kock’s radical plane metham locate the 9 y

nearest neighbors for atoms with different sizes. Figure {ause of the increase in shear elastic constant. The latter

shows snapshots of some typical atomic configurations fo eads directly to Increase n the dlslocatlc_)n coupling con-
stant,K. The transition becomes very sluggish, almost losing

the characteristics of a phase transitfor recent study of a
crystal subjected to a slowly varying random potential
suggests that there could exist KT transitions even down to

(x=0.195, we find that dislocations are tightly bond into pairs fggﬁ;ﬁgﬁgﬁgﬁggf ?T[})garg;tuil?c;?onrﬁiss"tﬁ) r\:\/c}lldtr)\ztt\il(\iiegf ?ﬁé
with only a neglectable number of isolated disclinations or. y may

dislocations. Forx>0.15, the number of dislocations in- tralnr?t(lgrr]lcllrlljgiggSlvrcgl?gt?:;evidence of the hexatic phase
creases slowly at first and then rises precipitously. Corre; ’ P

spondingly, the defect configuration exhibits quantitative:cgr?:]a'f!oonr Ir?ug:r? dtl\t\tléstlon(laess; ;?Qg](;rgfb('j?f?geirtr;};ilsoyﬂ?é'
changes. As shown in Fig. 6, at=0.20, the dislocations ying 9 yp '

become more diffuse and seem to be breaking loose as corﬁgxat'c phase is characterized by the quasi-long-range orien-

. . o . ational order and short-range translational order. We found
pared with the tightly bonded pairs in the crystalline phaseslfteat the hexatic amorphous phase forms when a certain frac-

various defects at~0.15, 0.20, 0.25, 0.30, and 0.50. Since
the arrays are kept at low temperature, these configuratio
do not show large changes in the period of a few thousan
MD steps after equilibration. In the crystalline phase

Defining isolated dislocations to be the ones that are at lea Yon of dislocation pairs unbind to become isolated. The or-

1 0,
one lattice parameter apart, we can see that about 15% of t 2ring and thermodynamic properties of the hexatic phase

dislocations are in isolated state at the hexatic phase tran%rmin binary arravs bear striking similarities with those
tion. The rest of dislocations are still paired, but they are g y y 9

more loosely bonded and become elongated, or stretched. edicted in the theory of 2D mettinig? However, we found

the concentration of small atoms increases, both isolated an; Oa;tlfeuaréhfor g:zggaetrig]r? L?rié?rle d?nexitéitaer:grwslézg:s/z% c:ﬁzts
paired dislocations tend to form chainlike small segments 9- '

Many of those chainlike segments are made of several elorg'osllj?]fﬁfenss t/(\e/aidc;oaduzfrrsatgdggr?;]enitr\?ggﬁ (i:rr:a”r:fe(r);Lgrrw?g:n
gated dislocation pairs, making it difficult to determine if ' pp ying

they are still dislocation pairtsee Figs. &) and &d)]. As for formation of amorphous phases.

disordering increases with increasing concentratione ob- We would like to thank D. Webb and P. B. Weichman for
served neither that the isolated dislocations are dissociatedany stimulating discussions. This work is partially sup-
into isolated disclinations nor that the dislocation pairs fur-ported by the Department of Energgrant No. DE-FGO03-
ther unbind to form isolated dislocations. Instead, they ten@6ER45242.
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