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We report evidence of the hexatic phase formation in Lennard-Jones binary substitutional random arrays
from isothermal-isobaric molecular-dynamics simulations. The hexatic phase is analogous to those predicted in
Kosterlitz-Thouless theory of melting that is characterized by short-range translational order and quasi-long-
range orientational order. At the crystal to hexatic phase transition, dislocation pairs are observed to unbind
into isolated dislocations. Further disordering of the hexatic phase, however, does not lead to dissociation of
dislocations into disclinations. Instead, the dislocations become clustered and form dislocation networks which
results in formation of amorphous phases.@S0163-1829~96!02741-5#

Melting in three dimensions is known to be a first-order
transition where the sharp Bragg peaks of the crystalline
phases abruptly become flat and smeared out. In two dimen-
sions~2D!, the long-range translational order of a crystalline
phase is destroyed spontaneously by fluctuations of long-
wavelength phonon modes, leaving it with quasi-long-range
translational order~power-law decaying!.1 It was proposed
by Kosterlitz and Thouless2 ~KT! that melting in two dimen-
sions is a topological order-to-disorder transition that pro-
ceeds via dislocation pair unbinding. According to this
theory, the liquid phase is a phase containing a certain frac-
tion of isolated dislocations. Further analysis suggested that
isolated dislocations alone can indeed destroy the quasi-long-
range translational order in 2D crystalline phases, but leaves
the long-range bond-orientational order intact.3 Therefore,
the liquid phase defined by Kosterlitz and Thouless2 has
short-range translational order and quasi-long-range orienta-
tional order. According to Nelson and Halperin~NH!,3 it is a
liquid-crystal-like phase, the hexatic phase. The true liquid
phase having short-range translational and orientational or-
der forms when the isolated dislocations in the hexatic phase
further unbind to form isolated disclinations. Therefore, it is
possible for 2D crystalline phases to melt continuously via
such two consecutive defect-unbiding processes involving an
intermediate hexatic phase.

The defect-unbinding theory for 2D melting2–4 has drawn
enormous attention in the past decade.5–7 The hexatic phase
has been found in liquid crystalline phases, Coulomb gases,
and vector dislocation models.5,8 However, it has long been
debated whether hexatic phase exists for systems made of
atoms interacting with pair-wise interactions such as hard
sphere and Lennard-Jones~LJ! potentials.5–9 The consensus,
largely due to extensive computer simulations in the past
decade, is that the hexatic phase is unlikely to exist in these

systems.5–8,10,11These studies have shown that dislocation
densities increase precipitously during heating and more
complex defects such as grain boundaries and dislocation
aggregates usually form at the elevated temperatures. These
results seem to contradict the theory of 2D melting which
assumes that dislocations are relatively sparse and that at
melting, dislocation pairs unbind to form simpler, more el-
ementary defects such as isolated dislocations and disclina-
tions. To mimic the conditions under which the hexatic
phase is expected, more repulsive interatomic potentials6

have been used. But only in the case where the dislocation
core energy is explicitly manipulated in a dislocation vector
model have formation of hexatic phases been observed
unambiguously.12

In this work, we chose a different path to study the
hexatic phase formation by introducing disorder to a 2D
crystalline phase. First, instead of heating it, we choose to
alloy two types of atoms by mixing one into another under
constant pressure and temperature. A similar procedure was
taken by Nelson, Robinstein, and Spaepen13 to investigate
bond-orientational order in binary arrays made of steel balls.
In this experiment, larger balls of two different sizes were
introduced into the matrix of smaller ones. The equilibrating
and temperature effects were simulated by mechanically vi-
brating a flat tray containing the mixture of balls. They found
that dislocations were created around the bigger balls when
their nearest-neighbor coordinates deviate from those of the
hexagonal lattice. At higher concentrations of the bigger
balls, the hexatic phases as characterized by quasi-long-range
orientational order and short-range translational order were
reported to form.

With molecular-dynamics~MD! simulations, we can sys-
tematically investigate topological order and thermodynamic
properties for binary arrays made of atoms interacting with
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realistic interatomic potentials. The binary arrays to be stud-
ied are made of atoms interacting with Lennard-Jones poten-
tials,

fab~r !524eabF S sab

r D 122S sab

r D 6GS~r !, ~1!

where a and b denote the two atomic species,A and
B. S(r ) is the cubic spline switch function defined as
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where r c52.45s and r l51.90s are the cutoff distance and
the distance at whichS(r ) is switched on, respectively.s is
the LJ parameter defined below.S(r ) is used to ensure
smoothness of the potentials at the cutoff distances and to
reduce statistical errors for long simulations.14

The two types of atoms are chosen such that they differ
only in sizes. This is achieved by introducing the atomic size
ratio, a5RB/RA , whereRA andRB are the atomic radii of
the two types of atoms,A andB. For the LJ binary array,
a5sBB/sAA , wheresBB andsAA5s are the parameters for
A-A and B-B interatomic LJ potentials. Furthermore, the
depths of the LJ potentials,eAA , eAB , andeBB , are set equal
to e in order to avoid chemical short-range ordering or clus-
tering resulting from differences in those parameters. For the
interaction between A and B atoms, we take
sAB5(sAA1sBB)/2. At given pressure and temperature, the
binary array is therefore completely specified by only two
parameters, the atomic size ratioa which is determined by
the relative sizes of the two types of atoms and the relative
concentration of the mixturex5NB/(NA1NB). HereNA and
NB are the numbers ofA andB types of atoms in the array.

Defects in the binary array are generated primarily by
atomic size difference. Since the hexagonal lattice is the only

close-packed, lowest energy configuration in 2D, substitution
with solute, or impurity atoms, with different atomic size
introduces disparity to the local packing in the host crystal-
line lattice.15 This size difference causes changes in inter-
atomic interactions among the atoms within the potential cut-
offs. After relaxation, it leads to local distortion in atomic
positions and strain fields on the lattice, both of which con-
tribute to increase of free energies of the disordered binary
arrays. As more and more solute atoms are introduced, dis-
tortions become more acute and the crystalline lattice be-
comes softer. Eventually, under the combined effects of tem-
perature~atom vibration! and the lattice softening, the local
sixfold symmetry of the atoms with nearest neighbors of
different sizes is broken and disclinations are generated. As
shown below, the binary arrays with the simplest choice of
interatomic potential parameters can have the same topologi-
cal defects as those in a pure LJ solid at melting.

Compared with the monoatomic systems, the binary ar-
rays have an additional degree of freedom,x, that we can
utilize to avoid defect clustering which is a direct competing
process with defect unbinding. The alloying process takes
place while the binary mixtures are kept at constant tempera-
tures below the glass transition temperatureTg . HereTg is
determined previously by quenching the corresponding bi-
nary liquids using constant pressure MD with quench rate of
109 K/s. At such low temperature, it is difficult for defects to
aggregate through long-range diffusion. The defects, once
generated, are then pinned, or frozen. Therefore, by alloying
two different types of atoms, we have possibilities to observe
hexatic phase formation and crystal to amorphization transi-
tion by traversing the crystal-hexatic phase boundary as we
change the relative atom concentrationx at constant tem-
perature.

Starting from a pure LJ crystal made of bigger atoms on
the hexagonal lattice, we prepared the substitutional arrays
by either randomly replacing them by the smaller ones with

FIG. 1. Phase diagram in parameter space~a,x! at T50.2
~,Tg50.22! andP50.0 for the 2D LJ binary arrays.X marks the
phases simulated using MD.

FIG. 2. Average translational and orientational order param-
eters. The former is defined as (1/N)( i

NrG(r i), where rG(r i)
5exp@iG•r i#. The latter is defined as (1/N)( i

NC(r i) ~Ref. 23!,
where C(r i)5(1/NNN)( j

NNNc6(r i j ), and c6(r i j )5exp@imu~r i j !#,
wherem56. NNN is the number of the nearest neighbors of atomi
andu~r i j ! is the angle of the nearest-neighbor bondi - j with respect
to the reference axis.
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the relative concentrationx at each given atomic size ratioa,
or by varyinga of the binary mixtures at a givenx. We used
both methods for samples made of 1024, 1764, 2500, and 104

atoms and found no significant difference in the results.
Thermodynamic and structural properties of the binary

substitutional random arrays were obtained using constant
pressure and temperature MD methods.16,17Technical details
for the simulations can be found in Ref. 17. Here, we only
briefly mention some additional procedures unique for the
binary arrays. First, a relatively long simulation time is
needed for equilibration since the arrays are at low tempera-
ture. It usually takes about 105 MD steps for each array.
When the arrays are close to the hexatic phase boundary, it
was necessary to carry out extremely long simulations~up to
107 MD time steps! to obtain thermodynamic properties.
Second, we performed configuration averages on the thermo-
dynamic properties, in addition to the time averages. About
5–10 different configurations of binary array that have dif-
ferent initial random distributions of small atoms were used
for the configuration averages.

In the following, we present our results using isothermal
and isobaric MD simulations of the binary arrays with
a50.75 atT50.20 ~in reduced LJ units! andP50.0. Tg is

about 0.22 for these arrays. Results for other systems with
different size ratios are summarized briefly in Fig. 1. As
shown in the phase diagram, there are three distinctive
phases in the 2D binary arrays in different regions when
a,ac50.82, crystalline, hexatic, and amorphous. They are
characterized by different translational and orientational or-
der. As shown in Fig. 2, the average translational and orien-
tational order parameters for those arrays witha50.75 show
three regions corresponding to the three different phases. The
hexatic region begins atx'0.20 where the translational order
parameter is almost zero, but the orientational order param-
eter is still finite. At higher concentrations, one observes
slow decrease of the bond orientational order. Atx>0.40,
both order parameters become nearly zero.

As shown in Fig. 3~a!, the translational order correlation
functions in the pure LJ solid decay algebraically with dis-
tance. This quasi-long-range order in translational symmetry
is due to fluctuations in long-wavelength phonon modes.1–3

In contrast, the orientational order correlation function re-
mains a constant close to unity as predicted in the theory of

FIG. 3. ~a! Translational order correlation function
^rG(r )* rG(0)& and ~b! orientational order correlation function
^c6* (r )c6(0)& for LJ binary arrays with 1764 atoms.

FIG. 4. The exponent of the algebraic decaying translational
order correlation function determined using Eq.~2!.

FIG. 5. The Kosterlitz-Thouless constant.S is the total area of
the 2D arrays. The dotted line is 16p. The inset is the Poisson ratio.
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2D melting.3 As shown in Fig. 3~b!, it becomes algebraically
decaying once theB atoms are alloyed into the matrix ofA
atoms. At the hexatic phase boundary~x'0.20!, the correla-
tion function of translational order parameters decays to zero
at a distance approximately close to the fourth-nearest neigh-
bors; while the orientational order correlation function still
remains quasi-long-range. The later remains finite untilx
reaches 0.4 where both order correlation functions become
short ranged.

As predicted by the theory of 2D melting the power-law
decay of the translational correlation of the crystalline solid
phase,rG(r );r2hG, has an exponenthG that cannot exceed
1/3.3 Indeed, our results show that it approaches this limiting
value as the hexatic phase boundary is reached~Fig. 4!. The
exponents can be obtained by either fitting the correlation
functionsrG(r ) or using the result3

hG5
uGu2kBT
4p

3m1l

m~2m1l!
, ~2!

wherem andl are the Lame´ constants that are related to the
isothermal elastic constants. The elastic constants are calcu-
lated directly in our simulations by utilizing fluctuations of
the MD cell shape.16,17 G is the shortest reciprocal-lattice
vector in the hexagonal lattice. As shown in Fig. 3~b!, the
correlation functions for the bond-orientational order param-
eters decays asr6(r );r2h6 with exponents,h6, that remain
below the limiting value 1/4~Ref. 3! for x,0.40 in the
hexatic phase before the amorphous phase forms.

Thus far, the results presented above suggest that the tran-
sition at x'0.20 leads to a hexatic amorphous phase. As
proposed in the KTNHY theory,2,3 it should involve disloca-
tion pair unbinding to form a certain fraction of isolated
dislocations. Such a process can be measured by the disloca-
tion coupling constant, or the Kosterlitz-Thouless constant,2

K5
4a2

kBT

m~m1l!

~2m1l!
, ~3!

FIG. 6. Atomic configurations of defects at~a! x50.15, ~b! x50.20, ~c! x50.25, ~d! x50.30, and~e! x50.50. The crosses denote five
nearest-neighbor~NN! disclinations, the plus signs are 7NN ones, and the asterisks are 8NN ones. A 5NN disclination and a nearest-neighbor
7NN disclination form an edge dislocation~Ref. 18!. The bigger atoms are represented as circles and smaller atoms as squares.
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wherea is the lattice parameter. At the transition,K should
approach an universal constant, 16p, due to screening effects
on the shear elastic modulus from presence of other
dislocations.3 Figure 5 shows the dislocation coupling con-
stant versus concentration ata50.75 calculated using Eq.
~3!. At the transition, one sees clearly thatK approaches this
value within 5% of the standard deviations.17 It levels off in
the hexatic phase and becomes almost flat in the amorphous
phase. In contrast, it becomes zero immediately at melting.3

Additional evidence for the formation of the hexatic phase
is from visual observations of the atomic configurations of
defects. Such observations however, can be misleading if the
conditions of the observation are not specified clearly. For
example, an evolving atomic configuration during a phase
transition can be mistaken as the equilibrium configuration
of a new phase if one does not specify the time span of the
snapshot. In our work, we mapped out the configurations of
dislocations and disclinations using nearest-neighbor
coordinates.18 This is usually done using Voronoi polyhe-
dron construction. In a binary array with large atomic size
difference, the Voronoi technique is not reliable. Instead, we
used Fisher and Kock’s radical plane method19 to locate the
nearest neighbors for atoms with different sizes. Figure 6
shows snapshots of some typical atomic configurations for
various defects atx'0.15, 0.20, 0.25, 0.30, and 0.50. Since
the arrays are kept at low temperature, these configurations
do not show large changes in the period of a few thousand
MD steps after equilibration. In the crystalline phase
~x<0.15!, we find that dislocations are tightly bond into pairs
with only a neglectable number of isolated disclinations or
dislocations. Forx.0.15, the number of dislocations in-
creases slowly at first and then rises precipitously. Corre-
spondingly, the defect configuration exhibits quantitative
changes. As shown in Fig. 6, atx50.20, the dislocations
become more diffuse and seem to be breaking loose as com-
pared with the tightly bonded pairs in the crystalline phases.
Defining isolated dislocations to be the ones that are at least
one lattice parameter apart, we can see that about 15% of the
dislocations are in isolated state at the hexatic phase transi-
tion. The rest of dislocations are still paired, but they are
more loosely bonded and become elongated, or stretched. As
the concentration of small atoms increases, both isolated and
paired dislocations tend to form chainlike small segments.
Many of those chainlike segments are made of several elon-
gated dislocation pairs, making it difficult to determine if
they are still dislocation pairs@see Figs. 6~c! and 6~d!#. As
disordering increases with increasing concentrationx, we ob-
served neither that the isolated dislocations are dissociated
into isolated disclinations nor that the dislocation pairs fur-
ther unbind to form isolated dislocations. Instead, they tend

to form network chain, or grain-boundary-like configurations
first and become clustered later, as shown in Figs. 6~d! and
6~e!. This trend continues until the amorphous phase forms.
It appears that the hexatic phase ‘‘melts’’ and becomes an
amorphous phase when the dislocation network chains, or
grain-boundary-like defect complexes proliferate. Chui11 in
his grain-boundary-mediated melting theory predicted such a
phenomenon. But he predicted a much sharper transition
than the one we observed here.

We also observed a first-order ‘‘melting,’’ or ‘‘amor-
phization,’’ at the equimolar concentrationx50.5 upon vary-
ing a.21 This is in agreement with the early report by Boc-
quet et al.20 The transition at this point is abrupt with
changes in both order parameters and also in enthalpy and
volume. In contrast, the amorphization involving the hexatic
phase is continuous in all the properties. From the phase
diagram~Fig. 1! we see that the hexatic phase region gradu-
ally closes when the atomic size difference becomes smaller
and as the smaller atoms are more concentrated. In addition,
we found that the transition become more abrupt at elevated
temperatures aboveTg .

21 At low temperature~T,0.15!, we
found that dislocation unbinding becomes very difficult be-
cause of the increase in shear elastic constant. The latter
leads directly to increase in the dislocation coupling con-
stant,K. The transition becomes very sluggish, almost losing
the characteristics of a phase transition.21 A recent study of a
2D crystal subjected to a slowly varying random potential
suggests that there could exist KT transitions even down to
zero temperature.22 The apparent inconsistency between our
results and the theory may result from slow kinetics of the
transition in our simulations.

In conclusion, we found evidence of the hexatic phase
formation in the diffusionless, random binary arrays by ‘‘al-
loying’’ or mixing two types of atoms of different sizes. The
hexatic phase is characterized by the quasi-long-range orien-
tational order and short-range translational order. We found
that the hexatic amorphous phase forms when a certain frac-
tion of dislocation pairs unbind to become isolated. The or-
dering and thermodynamic properties of the hexatic phase
forming binary arrays bear striking similarities with those
predicted in the theory of 2D melting.2,3 However, we found
that further disordering of the hexatic amorphous phase does
not lead to dislocation unbinding. Instead, we observed that
dislocations tend to cluster and form network chains or grain
boundaries, which appears to be the underlying mechanism
for formation of amorphous phases.
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