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We develop here a highly efficient variant of the Monte Carlo method for direct evaluation of the
partition function, free energy, and other configurational dependent physical properties for long
polymer chains. This metha@C—-BB) combines continuous configurational biased sampling with
Boltzmann factor biased enrichment. To illustrate the efficiency and to validate the bias correction
for weighting the torsion and chain enrichments, we applied this model to isolated single chains
using a united atom force field. For a 50 monomer polymer chain CC—BB with 400 chains leads to
an accuracy of 0.1% in the free energy whereas simple sampling direct Monte Carlo requires about
10° chains for this accuracy. This leads to cost savings by a factor of about 350 000. CC—BB is
easily extended to multichain systems, to the condensed state, to more realistic force fields, and to
evaluating the mixing free energy for polymer blends. 1897 American Institute of Physics.
[S0021-960607)51016-9

I. INTRODUCTION many other§:” An excellent such method is the the scanning
method of Meirovitch. This method uses step-by-step

Atomistic simulations using chemically realistic models th with the torsi | lina based i i
are becoming quite important in characterizing the structuralgrOW Wi € torsion angle sampling based on a transition

mechanical, and polarization propertied of macromol- probability function(TPF determined by scanning for pos-

ecules. However, practical applications to polymer technol__sible future continuation of the vv_hole chain. The applicabil-
ogy require evaluation of the free energy as a function ofty Of the TPF method to evaluation of the entropy haggbeen
temperature. This requires expensive thermodynamic intéVell demonstrated for relatively long chains on a lattice.
grations, and despite the advances in Metropolis Montdlowever, for off-lattice systems building the TPF is too ex-
Carlo and molecular dynami¢#1D) methods, there are few pensive because it requires evaluation of an enormous num-
realistic simulations for the free energy function even forber of nonbonded interactions. Consequently, application of

The direct method for estimating the free energy func-short chains, often with future scanning of only a few steps.
tion is Simp|e Samp”ng direct Monte Car((SS_DMQ in Another workable extension of biasing methods is the

which the whole phase space is sampled uniformly by rancontinuous configurational biase@€CB) sampling devel-
domly generating a large number of possible configurationsoped by Frenkelet al® which extends the Rosenbluth
The partition function is calculated as the average Boltzmanmethod to the continuous space suitable for dense systems.
factor for all the sampled configurations. For polymer sys-Frenkel used the Metropolis procedure in developing the
tems described with rigid constraints on bond lengths and€CB method but modified the transition probability by intro-
angles, SS-DMC is preceded by a random sampling of thducing a weighting on the energies for the next-step configu-
complete set of torsion angles. SS-DMC has been extemation. In this case, the dynamic nature of the method pre-
sively used for self-avoiding walk studies on a lattfddow-  vents direct evaluation of the free energy function.
ever, because of drastic sampling attrition, SS—DMC is not  Another efficient modification of SS—DMC is the en-
applicable to long polymer chains, even for lattice systems.richment method first developed by Wall and ErpenBéok
Many methods have been proposed to remedy the ineft959. This method dramatically reduces sampling attrition
ficiency of SS-DMC. Most widely used is the biased sam-by using successfully generated short chains more than once.
pling (inversely restricted samplingroposed by Rosenbluth | ax and Gill° used this method for an extensive study of the
and Rosenbluthin 1955. In the Rosenbluth procedure for a Domb-Joyce model of random walks on a simple cubic
self-avoiding lattice walk, all nearest-neighbor sites areattice!* However, its application is still limited to self-
checked at each step and pre-occupied sites are excludgdoiding walk problems on lattice systems.
from the sample. The sampling bias is then corrected to give  QOrland,et alX? and Grassbergeet al'® successfully ex-
the proper statistical average value. _ tended the enrichment method to off-lattice systems. Their
This biasing idea has been developed and modified byhethod is based on the replication—deletion procedure
(RDP), in which the chain is replicated or deleted by a factor
dAuthor to whom correspondence should be addressed. proportional to the Boltzmann factor increment per added
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by a Lennard-Jones 12-6 potential as

-

where e/kg=72 K, 0=0.3923 nm, and; is the distance
betweenith andjth atoms.
In addition, the torsion potential in EqR) is included

5
E‘l(((ﬁi) = ay(cose)", (2a)
B n=0

ELy(rij)=4e li—jl=4, ()]

where
ay,=1.157, a;=1.515, a,= —1.636,

a;=—0.382, a,=3.271, andas=—3.927. (2b)
FIG. 1. Definition of geometric parametefis ¢; , andR. . Here ¢, is ith torsion angle, and the geometry properties are
taken a¥*

monomer throughout chain growth. For real polymers with ~ bond length: [=0.153 nm,

long-range interactions the calculation time for inserting a el o (3
monomer is proportional to the chain length. For long poly- bond angle: 9=70.53°,
mers, most chains are deleted after the expensive proceduas defined in Fig. 1this corresponds to a CCC angle of
of calculating the energy because they often encounter high09.479.

energy nonbonding overlaps. For realistic systems this limits  The total Hamiltonian has the form

the application of the RDP to relatively short chains. The N -4 N
other drawback of RDP is that it tends to replicate burst HI bV 1= E fr(fdV)]+ E.d 4
numbers of chains unless suitable population controls are L] Z’s 121 ulry ()] 24 (1), @

e_stabhshed. Unfprtunately there IS no gef‘era' T“e‘h"d to 3nd we will guote the results in terms of a reduced tempera-
sign the population control factor; it requires trial and error

. ture
adjustments.
In this paper we present two improved MC sampling _kBT
methods for off-lattice polymer chains: TV_T' ®)

(i) The CCB-DMC method is the extension of the con-
tinuous configurational biasé@CB) method to direct !l THE THERMODYNAMIC FUNCTIONS
MC sampling, using a fast algorithm for evaluating
the torsion sampling weighting function.

(i)  The Boltzmann factor biase@®FB) method is an im-
proved enrichment method, which introduces a
configurational-dependent enrichment procedure with 2m (27
correct bias correction and automatic population con- 2N~ fo fo ex —fH({¢iH)]1dbs - dn, ©
trol.

The configurational partition function for the model
polyethylene chain consisting & carbon atoms is defined

o _ whereB = 1/kT. (Here ¢; is the torsion specifying the posi-
Combining CCB and BF&denoted CCBBdramatically ac-  tion of atomi with respect to atomis— 3,i — 2, andi — 1.)

celerates the convergence of direct Monte Carlo sampling.  The Helmholtz free energf, the potential energg,
This leads to efficient direct calculations of the free energyand the entropys, are given by
function for long polymer chain systems. Herein we describe
the algorithm in detail, demonstrate the sampling efficiency, An==pB1In2Zy,
and validate the bias correction through applications to pre- 2w (2w
dicting free energy dependent properties of polyethylene EN=f f H{oiHexd —BH{¢i})1dd,s---ddy,
(PE) polymers. o Jo
B (7
(En—Fn)
Il. THE POLYMER MODEL SN:T'
As a prototype we will consider isolated single polyeth- . :
ylene chains with N carbon atoms using the united atonﬁA‘ Simple sampling
model defined by Ryckaert—BellmatigA/RB).2* The new In the conventional direct Monte Carl®@MC) method,
methods are quite suitable for polymers containing sidgolymer chains are generated by random step-by-step sam-
chains, but the emphasis here is on the method. Ir{li#e pling of torsion angles. A completdl-mer chain is con-
RB) model each atomin the chain(Fig. 1) is characterized structed in sequence, where ttib step samples thi¢h tor-
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sion to construct ain-mer chain. Then a new chain is setup The form of the partition function after bias correction be-
and sampled again from scratch. This is referred to as simpleomes

sampling(SS. The partition function is evaluated by N, (N
) N 3Nc ZN:Nc_lZIRSE [[52*(¢4a---1¢i—1) : (13
Zy=Ng'2m"°% exd - BH({i})]. ®) =
W* must be calculated at every step since it depends on all
HereN. is total number of chains generated. previous steps. The computation time for this TWF is ap-
The average valug(f) of a physical property,f proximately proportional to the step numbér, therefore,
=f({¢;}), is calculated as this sampling method becomes too expensive for systems
N containing a large number of atoms.
. siet({gihexd - BH{ A1 ©
speexd—BHAN]
C. Continuous configurational biased (CCB) direct
B. Independent rotational sampling Monte Carlo

The sampling efficiency of SS—-DMC is improved by To remedy the above problem with rotational sampling,
applying rotationally biased sampling, in which torsions arewe implemented the continuous configurational biased
sampled using a weighting function based on the BoltzmangCCB) direct Monte Carlo method, an efficient alternative
factor of the torsion energy. We denote this as independersgampling method. In CCB—-DMC, a cutoff length for non-
rotational samplingIRS). For IRS the normalized torsion bonding interactions is introduced into the TWF calculation.

weighting function(TWF), W gs is defined as On constructing the TWF for théth torsion, we define a
(b) sphere of radiu®,, centered at thei (— 1)th atom position,
Wigs(#) = 9irs , (10g  as shown in Fig. 1. The length & should be taken larger
ZIRs thanl + o in order to ensure that all possible atomic overlaps
where are checked. Boltzmann factors for the nonbonding energy
. betweenith atom and all other atoms inside the cutoff sphere
Zirs= ) Iira(b)dé, (10b) are included in TWFWccg, as
9cce( i b4 Pi-1)
W i o Qi) = y 14
Ol #)=exiT — BEL(4)]. (109 T O Sy B

Torsion angles are generated in accordance with(Hog.  where
The partition function for IRS after bias correction is evalu-

2
ated by Zcs(Pasebi-1)= | Gece($iidasbi-1)ddy, (14b)

N, N i-4
Zy=Ng Yz Y eXF{ _,3245 241 ELa(rij)

1

. (1Y dcce(bis das- - ndi—1)

i—4
W rs need be calculated only once so that computational _ _ _ . -

work involved in evaluating the partition function involves iRl ¢|)ex;{ '82:1 ORe=rpELry) . (149
just the Boltzmann factor for the nonbonding energy. With
IRS the use ol gg effectively excludes high torsion ener-
gies throughout the MC sampling. However, spatial overlaps ©®(R)=0 if R<0=1 if R=0. (15
between nonbonding atoms are inevitable, leading to hig

configurational energies. In order to exclude these overlap%, th | bondi i idered th :
information about the spatial environment in the vicinity of ecause the only nonbonding atoms considered are those in
the local vicinity of a growing chain end. In addition, the list

he growing chain end shoul intr into the TWF. L . . ) .
El'r?egreosultiglgcf(;arm ?)f (tjhse .?\lljvtlj:\/\t;f ist Si?/lé%egy to the of atoms inside the cutoff circle for théh atom is automati-

cally available since all the necessary atomic distances were

and O (R) is the Heavyside step function

Iq’he computation time foWcg is almost independent of

_ g*(P;ds,....0i_1) calculated to obtain the energy at the just previous step. The
W*(i;baye o bi-1)= Z*(har.cbi_y) (128 pias-corrected partition function has the form of Ef6),
which includes the calculation of those nonbonding energies
where that did not appear in the TWF calculation of
2 N N
Z(dar.bi_q) = *(biibg,....bi_1)deb, (12D _ 3
(bors b= | 0" Didar b DB 02D g iy S [ng, zcca<¢4,...,¢il>J
o =4 N i-4
9% (i bar-..,di—1) =Qirs( Pi) EX —,3;1 Ev(rij) |- xex;{—ﬂi_zs jZl @(rij—RC)ELJ(r”)}. (16)
(129 o
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Orland et al® proposed introducing a weighting func- K
tion. However, they implemented the weight only for the ZN(K)=K‘1E IN(C). (18
valence part of energy and did not suggest practical methods c=1
for treating nonbonding interaction. DenotingL,(C) as the total number of chains generated for

clusterC cluster by using an arbitrary choice for the enrich-
ment factor, the partition functio(lL8) is calculated by

D. The continuous configuration Boltzmann biased Ln(©) Zh(C)
(CC-BB) method HNOC)= D (19)
=1 My(C)
In the enrichment method for self-avoiding walks on a
lattice, once a walk of— 1 steps is successfully generated by N Nt N
the SS method, this chain continues to be grown up to step MN(C)= IHI m;i(C), (20)
i in m;_, different ways. In order to avoid bias the enrich-
ment factorm;_; is always fixedaheadof the MC simula- tn-1
tion. The total chain multiplicityM; for stepi is defined as Ln(C)= nZl my-1(C). (21)
-1 In CCBB, the chain multiplicity,M(C), is determined as
Mi=JH1 m;. (17  proportional to the ratio of_,(C) to Z;_,(C — 1):
- . , , n p- ¢ 4(C)
In the enrichment method the chains obtained from a particu- Qj(C)= Z (C-1) (22

lar first monomer are not statistically independent. Hence the
set of all chains using the same seed as the first monomer are M{(C)=INT[Q[(C)] if Q'(C)>1
collected together and denoted aslaster Each cluster is o
given the same weight. =1 if Q(C)=1. (23

In RDP for a continuous space, chain enrichment is useghe enrichment factom!'_, is evaluated from the ratio of
to achieve a Boltzmann population for the collected chalnsMin to M!"_, . This procedure always keeps the chain multi-
Here M; is determined at every step as statistically proporpjicity approximately proportional to the Boltzmann factor of
tional to the ratio of the Boltzmann factor of step(1) 10 the chain at the just-previous step:
that of step {—2), wherem, is not integer. This leads to a

high frequency of sampling chains with high energgused PI(C)= M{(C) (243
by nonbonding overlgpwhich are subsequently deleted in i M ,(C)’

the course of sampling. The partition function is evaluated N N S

from the ratio of the total number of generated chains to the  Mi-1(C)=INT[P{(C)] if P{(C)>1

number of seeds. To avoid replicating chains too often, a ~1 if PIC)=1. (24b)

scaling factomp is multiplied by Boltzmann factor. Since the
suitable choice of scaling factors is unknown and stronglyFori < 5 the Boltzmann population of the chain collection is
dependent on chain size and temperature, one determinesmpletely satisfied in CCB. Therefore, we set the chain
them in trial and error manner prior to the MC simulation. multiplicity to unity
;Ii';lr?.se scaling factors should be fixed ahead of MC simula- MO=M0=---=MI=1. (249

In CCB-DMC we can exclude almost all high energy The choice ofp in Eq. (22) is arbitrary. Too large a
chains having nonbonding overlaps; thus we delete chaingalue ofp could lead to an exploding humber of samples of
very seldom in comparison with RDP. However, the sam-highly correlated configurations. Too small a value might
pling distribution is not Boltzmann; low energy chains in the lead to too few chains per cluster. For tR& example con-
collection can be included with too high a contribution to thesidered here, we usqo=1 since it results in enriched chains
partition function. Thus we extended the chain enrichment tdaving nearly equal contribution to the partition function.
control sampling so that all collected chains make a nearly To obtain an initial guess for the partition function,
equal contribution to the partition functidialthough we do  Z;(0), ashort non-BFB run is performedFor this study we
not intend to achieve a Boltzmann distributed collection ofsampled 200 chains prior to BFB sampling.the partition
chaing. In our new method the multipliciti; is determined  function used in the initial guess is too small, an extraordi-
at every step as proportional to the ratio of the Boltzmanmarily large enrichment factor might occur for clusters just
factor of a just-sampled chain to that of the running averagafter beginning the BFB sampling and ruin the MC sam-
value for the chain with same length. The partition functionpling. To avoid this we can introduce an upper limit for the
is explicitly calculated as the average of the weighting-biasenrichment factorarbitrarily without any additional bias
corrected Boltzmann factor divided by the chain multiplicity. For the example reported here no special controls of the en-
We denote this as the continuous configuration Boltzmanmichment factor were needed. Equati@¥) gave automatic
biased(CCBB) method. control of the number of chains generated by BFB sampling.

We rewrite Eq(16) in terms of a sum oveK clusters as The average number of generated chains per seed atom
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tended to become large at low temperature. It ranged fronn the local reference frame the coordinates of aiofar a

3.5 at the highest temperature to 11.2 at lowest oneNfor trial move at thegth grid point ¢{! is

=400. t : : ;
rqe=(1 cos @, sin 6 cos ¢,1 sin 4 sin ¢{), (30)

which is independent dfif the same type of grid is used for

IV. PROCEDURE all torsions.gecg( ;) is evaluated as

A. CCB sampling Jcce( @i base. o i—1)

Prior to the chain sampling, the torsion energy was cal-
culated for a fixed number of grid pointm this study we — q _ r_
used 200 equally separated grid points from 0 t@).2 Ors( 4 )exp{ ,8{% EusIRc=Tal) | (3D
Wirs, the normalized TWF for IRS, is then evaluated using
numerical integration fogzs as in Eq.(10b). This uses the
auxiliary distributionPgg(¢) in

Then zccg and W are evaluated by using the above ex-
pressions ofgccg. The auxiliary distributionPcg is ob-

tained by
¢
P (¢)=f Wirs(¢p')do’. (25) éi
IRS o RS Pcce(déi) = . Weee( @5 das-- - i-1)d . (32
We define a local Cartesian reference frame for each bond of
the chain® The axial transformation matritg is B. BFB sampling
~ cosé sin ¢ 0 In the BFB method we cannot foresee how many chains
ti=|sinfcose; —cosfsing; sing; |. (268  will be generated in a cluster. Thus we cannot know how
sin § sin¢; —Ccosé sin¢; —COS ¢, much memory is needed to store the information for all

growing branches of the chains in a cluster. Consequently we

The first atom is set at origin artd andt; are set as s X ! e Y
use a memory-saving algorithm, in which just one chain is

[1 00 grown at a time.
t,=[0 1 Of,
L0 0 1
[cos® sing O (260) 10 . - .
t;=| sind —cosf 0. () N=53(())
3 Tr=
) 0o 1 . r
iy . = '9F CCB E
The position vectorR;, of atomi is calculated as Eo :
=)
Ri = Ri _1+ Ti : b, = 107 L /\‘ IRS SS __
i , = \ EY R E
Ti=> t, (260) : / Y
k=2 F / | K
1072 B R T S ! R
b'=(1,0,0. 10° 10’ 10° 10°
. . _ _ log H
Hereb is the bond vector and; is the transformation matrix
from the local reference frame on tin bond to the original 6 : : : : .
reference frame. A random numbé&runiformly distributed E (b) ]
in the interval[0, 1), is drawn and the fourth torsion angle S 3 ]
¢4 is obtained by requiring 4 b ]

Prs(¢ha) =¢. @ % L}

. . . . S - CCBB E
For i>4 after sampling thei{-1)th torsion, all nonbond = s ]
distances are calculated to evaluate the energy and also to 2 r E
define an atom groupk};, whose elements consist of the 1 b ]
neighbors of thei(—1)th atom [ ]

) [0 S POl N B, T NI

{k}i={k||Ri_1— Ry <R;;1sk<i—5}. (28 2 2.2 2.4 2.6 2.8 3

The coordinates of all atoms in the ligt}; are transformed log H

into the local reference frame on thE—(l)th bond by using g, 2. Frequency distribution of the logarithmic potential energyl at

the inverse matrix T;_;) '=T|_,, =30 for N=50. (3) CCB (solid line), IRS (broken ling, and SS(dotted
_ line). (b) CCB (dotted ling and CCBB(solid line). Note that(b) is for just
— 1 _ Tt
RIL_ (Tic) " Re= Tifl' Rg. (29) the range of lodH from 2 to 3.
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TABLE I. EstimatedN, and computer timésfor convergence of the free

2
107 L energy to 0.1%N = 50, T, = 301).
1 [ ((?:‘r)e?Ener ) SS ] Time/chain Total time Ratio
_ 10F gy 3 N, ms s to CCBB
= : 3
St ] ss 16 6.4 6.4 10° 350 000
5 10°F RS . IRS 1.7x 10° 6.6 1.1x 10 600
© : ‘ ] CCB 16 90 90 5
I ] CCBB 4x 107 45 18 1
107 CCB 2 . — .
; \ E aUsing theiris crimsoN of Silicon Graphics Inc.
10-2-2' T E— v '”””Is' 7
10 10 10 Ne 10 10 10 For BFB sampling we simply complete construction of
one chain at a time. For cluster+ 1, thei index starts at
10°g ; . . ; i=4 and increases to=N. For each such we consider
: (b) <R> 3 eachi’ fromi to N. First we determine the enrichment factor
o0 I m;., using Eq.(22) and evaluate the running average of the
;\3 10 SS partition function,Z;,(k+1). For each step’ the chain gen-
- | H ] eration counteF;, is then defined and set i, =m;, . After
Z 10'f 4 calculatingF; from i’=i toi’=N, we then start at"=N
© i IRS 3 and work fromN back toi. EachF;. is checked to determine
ol CCB 1 if it is greater than unity. WherF;»>1 for i”">i—1, the
107 i"th torsion is sampled once more afg. is reduced by
10-1 sl el | P | InT
10° 10° 10* 10° 10° 107
NC 240 T oo T NS AR
N=200
(a)
FIG. 3. Convergence of CCB, IRS, and SS simulations Kb+ 50, 235 |
T,=30. (a) Free energy A) and (b) squared end-to-end distancéRg)).
Plotted is the ratio of the standard deviation to the average value for each frooadu—esse CCB
property vs the total number of sample chaliis. 230 CCBBI L
g 10° 10° 10 10 10° 107
< 58 T T T T
sgl CCBB  CCB IRS 53 N
0 Lot A
10 F A T T Tl T N 54
E (a) A (Free Energyy - E B T
_ N=50 NSO
ony 52 il 1 ol 1
& 100 10° 10 108 10° 10
= 10"1: Nc¢
S E
L B S —
N=200
b
10'22 1500  CCBB ( ) N
10 5 CCB
............. il
1000} % %_%/H By
10%, . .
E (\‘.—‘ 500 sl aaiul e sl
S
S 0 )
S 10'L B 350 ——rrrm
: Y,
g 300 CCBB
10°L 250F &8 §“’°—“'
F 200}
i ] N=50.
10" e o et — 1502 ' O 5 ' T 7
2 3 4 5 10 10 'I 10 10
10 10 10 10 Nc

Nc¢

FIG. 4. Convergence of the CCB and CCBB methodsNer 50 (broken FIG. 5. Comparison of properties fdr,=30 andN=50. (a) Free energy
line) and N=200 (solid line) at T,=30. (a) Free energy andb) squared and (b) end-to-end distance. Error bars show the standard deviations: SS
end-to-end distance. (open circle, IRS (filled circle), CCB (triangle, and CCBB(open square
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unity. A new chain is grown from steff to N and a new maximum in the distribution function &= 10 (with only
value ofm;» is evaluated for each step. The same procedur€.001% of the points belowd =10%7). This shows clearly
is repeated until there is nB;» larger than unity. At this the high efficiency of CCBB sampling.

point the K+ 1)th cluster is completed, and th&« 2)th Figure 3 shows the rates of convergence for the Helm-
cluster can be started. The flow chart is shown in the Appenholtz free energyA and for the squared end-to-end distance
dix. (R?). These are evaluated from 10 independent runs for each

method to obtain the standard deviatierfrom the average
value. The simulation conditions were the same as in Fig. 2.
V. EFFICIENCY For an 0.1% level of uncertainly i and(R?), IRS requires
a factor of 400 fewer chains than SS while CCB requires a

To compare the effectiveness of these various methOd?actor of 1300 fewer chains than IRS. Thus CCB requires a

we analyzed the distribution of sampled energies. In Fig. 2 :
the distributions of the logarithmic energy(log H), are factor of 520 000 fewer chains than SS.

; . In Fig. 2(b) the f(log H) distributions are compared for
compared for SS, IRS, a_nd CCB. Here 5|mu|at|_ons WETE PEIECB and for CCBB. Introduction of BFB into CCB shifts
formed for a polymer withN=50 atT,=30 (which corre-

o
sponds to thé temperature f(log H) is defined as the nor- the peak off (log H) lower by about 10% in logi. As shown

: . in Fig. 4, the convergence & was accelerated by about 5
malized occurrence rate of the total potential energy betwee{?mes forN="50 and 30 times foN=200. We see that BEB
log H and logH+d log H during the course of a simulation. )

Figure 2 shows that CCB and CCBB place nearly all samd coelerates the convergence(8F) by a factor of about 30

pling points in the rangeH=10"*-10") which contib- o l\é;?: ig?ir?botl;lteSr?sTJ;sz?r?.Fi 3, we estimatee
utes significantly to the Boltzmann factor. In contrast IRS P 9 9.

. o
leads to a maximum in the distribution function tt= 10'° Table | that to obtain an accuracy of 0.1% iA (for

. . N=50) the number of chains requiredl() is about 16 for
0 _ 17
(with only 0.1% of the points below =10"). SS leads to a SS, 1.7x 1 for IRS, 1@ for CCB, and 400 for CCBB.

Figure 5 shows the absolute values of the running aver-
age of A and (R?) for each method. Also shown are the

T ]
(a) ]
—  10°L 4
~§ F ] -0.6 T — - 5
= . ]
< ' T \\
é 102 . CCB ; -0.8 \\ .
g t  CCBB ] : \ 15
g ! ] o 20
= 10 Z 2
- IRS E S 2 30
E E SS : 3 = — 35
) SGI/IRIS Crimson 4 50
i < 1.4 T
-IOO ] ) X N e 100
10° 10° 1.6 200
Number of Atoms, N
ol L PR SR S N A L )
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FIG. 7. Properties for various temperatures of isolated polyethylene chains
FIG. 6. Computation time for SS, IRS, CCB, and CCBBTat 30 (on the as a function of the number of atom&@) Free energy, andb) squared
SGlIRIs crRIMSON). (@) The time per sample chain vs the number of atoms in end-to-end distance. This indicates that tfe temperature is about
a chain.(b) The time to obtain an accuracy of 0.1% in the free energy.  T,=30.
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m We validated the bias correction for weighting the torsion
and chain enrichments. Combining these two types of sam-

:%: plings (CCBB) dramatically improves MC convergence.
|—|—' This CCBB method provides the first practical approach for

- - direct evaluation of the partition function for long polymer

sample j-th torsion chains. It also allows evaluation of any configurational de-
calculate Boltgmanr) factor pendent physical properties simultaneously with the free en-

determine mj ergy.

This paper considered the simple model of an isolated
single chain with a united atom force field. However, CCBB
is easily extended to multichain systems, to more realistic
force fields, and to the condensed state. For example, we
have applied this method to evaluating the mixing free en-
ergy for polymer blend$’
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NEXT CLUSTER

FIG. 8. The flow of BFB sampling.

o o _ APPENDIX
uncertainties. The converged results coincide with each _ .
other, validating the bias correction for each method. The flow of BFB sampling(See Fig. 8.
_ Figure 6_ compares the dependence of the computatiofitialize: ConstructZ;(0) i=4,...N. Denote as cluster
time per chain on the number of atonh, Table | uses these K—q.
numbers to estimate the real time to convefg® 0.1% for
N=50 andT,=30. Introducing BFB into CCB reduces the
computation time per chain dramatically since the chains are
not .a” dependem' In this case th.e average number Ole. Karasawa, S. Dasgupta, and W. A. Goddard lll, J. Phys. Clo&m.
chains belonging to the same cluster is about ten. The resultygg (1997,
is that compared with a unit time for CCBB, CCB requires *N. Karasawa and W. A. Goddard Ill, Macromoleculs; 7268(1992.
. K. Kremer and K. Binder, Computer Physics Repdt25, (1988.
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tionality of A and<R > to the number of chaifl, we expect Macromoleculesl6, 249 (1983. H. Meirovitch, J. Chem. Phys79, 502
the theta temperature of the model to be arodne- 30. (1983.
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. I. Siepman,ibid. 70, 1145(1990.
longer chain at temperatures much further below the thetar 1 \a) and 3. J. Erpenbeck, J. Chem. PI8@.634, 637(1959.

temperature, finding good convergence for both properties.1om. Lax and J. Gill, Macromolecule0, 334 (1977.
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