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We develop here a highly efficient variant of the Monte Carlo method for direct evaluation of the
partition function, free energy, and other configurational dependent physical properties for long
polymer chains. This method~CC–BB! combines continuous configurational biased sampling with
Boltzmann factor biased enrichment. To illustrate the efficiency and to validate the bias correction
for weighting the torsion and chain enrichments, we applied this model to isolated single chains
using a united atom force field. For a 50 monomer polymer chain CC–BB with 400 chains leads to
an accuracy of 0.1% in the free energy whereas simple sampling direct Monte Carlo requires about
109 chains for this accuracy. This leads to cost savings by a factor of about 350 000. CC–BB is
easily extended to multichain systems, to the condensed state, to more realistic force fields, and to
evaluating the mixing free energy for polymer blends. ©1997 American Institute of Physics.
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I. INTRODUCTION

Atomistic simulations using chemically realistic mode
are becoming quite important in characterizing the structu
mechanical, and polarization properties1–3 of macromol-
ecules. However, practical applications to polymer techn
ogy require evaluation of the free energy as a function
temperature. This requires expensive thermodynamic i
grations, and despite the advances in Metropolis Mo
Carlo and molecular dynamics~MD! methods, there are few
realistic simulations for the free energy function even
system as simple as long polymer chains.

The direct method for estimating the free energy fun
tion is simple sampling direct Monte Carlo~SS–DMC! in
which the whole phase space is sampled uniformly by r
domly generating a large number of possible configuratio
The partition function is calculated as the average Boltzm
factor for all the sampled configurations. For polymer s
tems described with rigid constraints on bond lengths
angles, SS–DMC is preceded by a random sampling of
complete set of torsion angles. SS–DMC has been ex
sively used for self-avoiding walk studies on a lattice.4 How-
ever, because of drastic sampling attrition, SS–DMC is
applicable to long polymer chains, even for lattice system

Many methods have been proposed to remedy the i
ficiency of SS–DMC. Most widely used is the biased sa
pling ~inversely restricted sampling! proposed by Rosenblut
and Rosenbluth5 in 1955. In the Rosenbluth procedure for
self-avoiding lattice walk, all nearest-neighbor sites a
checked at each step and pre-occupied sites are excl
from the sample. The sampling bias is then corrected to g
the proper statistical average value.

This biasing idea has been developed and modified

a!Author to whom correspondence should be addressed.
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many others.6,7 An excellent such method is the the scanni
method of Meirovitch.7 This method uses step-by-ste
growth with the torsion angle sampling based on a transit
probability function~TPF! determined by scanning for pos
sible future continuation of the whole chain. The applicab
ity of the TPF method to evaluation of the entropy has be
well demonstrated for relatively long chains on a lattice6,7

However, for off-lattice systems building the TPF is too e
pensive because it requires evaluation of an enormous n
ber of nonbonded interactions. Consequently, application
TPF sampling to realistic systems has been limited to v
short chains, often with future scanning of only a few ste

Another workable extension of biasing methods is t
continuous configurational biased~CCB! sampling devel-
oped by Frenkelet al.8 which extends the Rosenblut
method to the continuous space suitable for dense syst
Frenkel used the Metropolis procedure in developing
CCB method but modified the transition probability by intr
ducing a weighting on the energies for the next-step confi
ration. In this case, the dynamic nature of the method p
vents direct evaluation of the free energy function.

Another efficient modification of SS–DMC is the en
richment method first developed by Wall and Erpenbeck9 in
1959. This method dramatically reduces sampling attrit
by using successfully generated short chains more than o
Lax and Gill10 used this method for an extensive study of t
Domb–Joyce model of random walks on a simple cu
lattice.11 However, its application is still limited to self
avoiding walk problems on lattice systems.

Orland,et al.12 and Grassberger,et al.13 successfully ex-
tended the enrichment method to off-lattice systems. Th
method is based on the replication–deletion proced
~RDP!, in which the chain is replicated or deleted by a fac
proportional to the Boltzmann factor increment per add
/106(16)/6722/8/$10.00 © 1997 American Institute of Physics
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6723J. Sadanobu and W. A. Goddard III: Boltzmann biased Monte Carlo for polymer chains
monomer throughout chain growth. For real polymers w
long-range interactions the calculation time for inserting
monomer is proportional to the chain length. For long po
mers, most chains are deleted after the expensive proce
of calculating the energy because they often encounter
energy nonbonding overlaps. For realistic systems this lim
the application of the RDP to relatively short chains. T
other drawback of RDP is that it tends to replicate bu
numbers of chains unless suitable population controls
established. Unfortunately there is no general method to
sign the population control factor; it requires trial and er
adjustments.

In this paper we present two improved MC sampli
methods for off-lattice polymer chains:

~i! The CCB–DMC method is the extension of the co
tinuous configurational biased~CCB! method to direct
MC sampling, using a fast algorithm for evaluatin
the torsion sampling weighting function.

~ii ! The Boltzmann factor biased~BFB! method is an im-
proved enrichment method, which introduces
configurational-dependent enrichment procedure w
correct bias correction and automatic population c
trol.

Combining CCB and BFB~denoted CCBB! dramatically ac-
celerates the convergence of direct Monte Carlo sampl
This leads to efficient direct calculations of the free ene
function for long polymer chain systems. Herein we descr
the algorithm in detail, demonstrate the sampling efficien
and validate the bias correction through applications to p
dicting free energy dependent properties of polyethyle
~PE! polymers.

II. THE POLYMER MODEL

As a prototype we will consider isolated single polyet
ylene chains with N carbon atoms using the united at
model defined by Ryckaert–Bellmans~UA/RB!.14 The new
methods are quite suitable for polymers containing s
chains, but the emphasis here is on the method. In the~UA/
RB! model each atomi in the chain~Fig. 1! is characterized

FIG. 1. Definition of geometric parametersu, f i , andRc .
J. Chem. Phys., Vol. 106
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by a Lennard-Jones 12-6 potential as

ELJ~r i j !54eF S s

r i j
D 122S s

r i j
D 6G u i2 j u>4, ~1!

where e/kB572 K, s50.3923 nm, andr i j is the distance
betweeni th and j th atoms.

In addition, the torsion potential in Eq.~2! is included

Et~f i !

kB
5 (

n50

5

an~cosf i !
n, ~2a!

where

a051.157, a151.515, a2521.636,

a3520.382, a453.271, anda5523.927. ~2b!

Heref i is i th torsion angle, and the geometry properties
taken as14

bond length: l50.153 nm,
~3!

bond angle:q570.53°,

as defined in Fig. 1~this corresponds to a CCC angle
109.47°!.

The total Hamiltonian has the form

H@$f i%#5(
i55

N

(
j51

i24

ELJ@r i j ~$f i%!#1(
i54

N

Et~f i !, ~4!

and we will quote the results in terms of a reduced tempe
ture

Tr5
kBT

e
. ~5!

III. THE THERMODYNAMIC FUNCTIONS

The configurational partition function for the mod
polyethylene chain consisting ofN carbon atoms is defined
as

ZN5E
0

2pE
0

2p

exp@2bH~$f i%!#df4•••dfN , ~6!

whereb 5 1/kT. ~Heref i is the torsion specifying the posi
tion of atomi with respect to atomsi 2 3, i 2 2, andi 2 1.!

The Helmholtz free energyA, the potential energyE,
and the entropyS, are given by

AN52b ln ZN ,

EN5E
0

2pE
0

2p

H~$f i%!exp@2bH~$f i%!#df4•••dfN ,

~7!

SN5
~EN2FN!

T
.

A. Simple sampling

In the conventional direct Monte Carlo~DMC! method,
polymer chains are generated by random step-by-step s
pling of torsion angles. A completeN-mer chain is con-
structed in sequence, where thei th step samples thei th tor-
, No. 16, 22 April 1997
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6724 J. Sadanobu and W. A. Goddard III: Boltzmann biased Monte Carlo for polymer chains
sion to construct ani -mer chain. Then a new chain is setu
and sampled again from scratch. This is referred to as sim
sampling~SS!. The partition function is evaluated by

ZN5Nc
21~2p!N23(

1

Nc

exp@2bH~$f i%!#. ~8!

HereNc is total number of chains generated.
The average valuê f & of a physical property, f

5 f ($f i%), is calculated as

^ f &5
(1
Ncf ~$f i%!exp@2bH~$f i%!#

(1
Nc exp@2bH~$f i%!#

. ~9!

B. Independent rotational sampling

The sampling efficiency of SS–DMC is improved b
applying rotationally biased sampling, in which torsions a
sampled using a weighting function based on the Boltzm
factor of the torsion energy. We denote this as independ
rotational sampling~IRS!. For IRS the normalized torsion
weighting function~TWF!, WIRS is defined as

WIRS~f!5
gIRS~f!

zIRS
, ~10a!

where

zIRS5E
0

2p

gIRS~f!df, ~10b!

gIRS~f!5exp@2bEt~f!#. ~10c!

Torsion angles are generated in accordance with Eq.~10a!.
The partition function for IRS after bias correction is eva
ated by

ZN5Nc
21~zIRS!

N23(
1

Nc

expF2b(
i25

N

(
j51

i24

ELJ~r i j !G . ~11!

WIRS need be calculated only once so that computatio
work involved in evaluating the partition function involve
just the Boltzmann factor for the nonbonding energy. W
IRS the use ofWIRS effectively excludes high torsion ene
gies throughout the MC sampling. However, spatial overl
between nonbonding atoms are inevitable, leading to h
configurational energies. In order to exclude these overl
information about the spatial environment in the vicinity
the growing chain end should be introduced into the TW
The resulting form of the TWF,W* , is given by

W* ~f i ;f4 ,...,f i21!5
g* ~f;f4 ,...,f i21!

z* ~f4 ,...,f i21!
, ~12a!

where

z* ~f4 ,...,f i21!5E
0

2p

g* ~f i ;f4 ,...,f i21!df i , ~12b!

g* ~f i ;f4 ,...,f i21!5gIRS~f i !expF2b(
j51

i24

ELJ~r i j !G .
~12c!
J. Chem. Phys., Vol. 106
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The form of the partition function after bias correction b
comes

ZN5Nc
21zIRS(

1

Nc H)
i55

N

z* ~f4 ,...,f i21!J . ~13!

W* must be calculated at every step since it depends on
previous steps. The computation time for this TWF is a
proximately proportional to the step number,i ; therefore,
this sampling method becomes too expensive for syst
containing a large number of atoms.

C. Continuous configurational biased (CCB) direct
Monte Carlo

To remedy the above problem with rotational samplin
we implemented the continuous configurational bias
~CCB! direct Monte Carlo method, an efficient alternativ
sampling method. In CCB–DMC, a cutoff length for no
bonding interactions is introduced into the TWF calculatio
On constructing the TWF for thei th torsion, we define a
sphere of radiusRc , centered at the (i 2 1)th atom position,
as shown in Fig. 1. The length ofRc should be taken large
thanl 1 s in order to ensure that all possible atomic overla
are checked. Boltzmann factors for the nonbonding ene
betweeni th atom and all other atoms inside the cutoff sphe
are included in TWF,WCCB, as

WCCB~f i ;f4 ,...,f i !5
gCCB~f i ;f4 ,...,f i21!

zCCB~f4 ,...,f i21!
, ~14a!

where

zCCB~f4 ,...,f i21!5E
0

2p

gCCB~f i ;f4 ,...,f i21!df i , ~14b!

gCCB~f i ;f4 ,...,f i21!

5gIRS~f i !expF2b(
j51

i24

Q~RC2r i j !ELJ~r i j !G , ~14c!

andQ(R) is the Heavyside step function

Q~R!50 if R,051 if R>0. ~15!

The computation time forWCCB is almost independent ofi
because the only nonbonding atoms considered are thos
the local vicinity of a growing chain end. In addition, the li
of atoms inside the cutoff circle for thei th atom is automati-
cally available since all the necessary atomic distances w
calculated to obtain the energy at the just previous step.
bias-corrected partition function has the form of Eq.~16!,
which includes the calculation of those nonbonding energ
that did not appear in the TWF calculation of

ZN5Nc
21zIRS(

1

Nc H)
i55

N

zCCB~f4 ,...,f i21!J
3expF2b(

i55

N

(
j51

i24

Q~r i j2RC!ELJ~r i j !G . ~16!
, No. 16, 22 April 1997
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6725J. Sadanobu and W. A. Goddard III: Boltzmann biased Monte Carlo for polymer chains
Orland et al.15 proposed introducing a weighting func
tion. However, they implemented the weight only for t
valence part of energy and did not suggest practical meth
for treating nonbonding interaction.

D. The continuous configuration Boltzmann biased
(CC–BB) method

In the enrichment method for self-avoiding walks on
lattice, once a walk ofi21 steps is successfully generated
the SS method, this chain continues to be grown up to s
i in mi21 different ways. In order to avoid bias the enric
ment factormi21 is always fixedaheadof the MC simula-
tion. The total chain multiplicityMi for stepi is defined as

Mi5)
j51

i21

mj . ~17!

In the enrichment method the chains obtained from a part
lar first monomer are not statistically independent. Hence
set of all chains using the same seed as the first monome
collected together and denoted as acluster. Each cluster is
given the same weight.

In RDP for a continuous space, chain enrichment is u
to achieve a Boltzmann population for the collected cha
HereMi is determined at every step as statistically prop
tional to the ratio of the Boltzmann factor of step (i21) to
that of step (i22), wheremi is not integer. This leads to
high frequency of sampling chains with high energy~caused
by nonbonding overlap! which are subsequently deleted
the course of sampling. The partition function is evalua
from the ratio of the total number of generated chains to
number of seeds. To avoid replicating chains too often
scaling factorp is multiplied by Boltzmann factor. Since th
suitable choice of scaling factors is unknown and stron
dependent on chain size and temperature, one determ
them in trial and error manner prior to the MC simulatio
These scaling factors should be fixed ahead of MC sim
tion.

In CCB–DMC we can exclude almost all high ener
chains having nonbonding overlaps; thus we delete ch
very seldom in comparison with RDP. However, the sa
pling distribution is not Boltzmann; low energy chains in t
collection can be included with too high a contribution to t
partition function. Thus we extended the chain enrichmen
control sampling so that all collected chains make a ne
equal contribution to the partition function~although we do
not intend to achieve a Boltzmann distributed collection
chains!. In our new method the multiplicityMi is determined
at every step as proportional to the ratio of the Boltzma
factor of a just-sampled chain to that of the running aver
value for the chain with same length. The partition functi
is explicitly calculated as the average of the weighting-bi
corrected Boltzmann factor divided by the chain multiplicit
We denote this as the continuous configuration Boltzm
biased~CCBB! method.

We rewrite Eq.~16! in terms of a sum overK clusters as
J. Chem. Phys., Vol. 106
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ZN~K !5K21(
C51

K

zN~C!. ~18!

DenotingLn(C) as the total number of chains generated
clusterC cluster by using an arbitrary choice for the enric
ment factor, the partition function~18! is calculated by

zN~C!5 (
n51

LN~C! zN
n ~C!

MN
n ~C!

, ~19!

MN
n ~C!5 )

i51

N21

mi
n~C!, ~20!

LN~C!5 (
n51

LN21

mN21
n ~C!. ~21!

In CCBB, the chain multiplicity,Mi
n(C), is determined as

proportional to the ratio ofz i21
n (C) to Zi21(C 2 1):

Qi
n~C!5

p•z i21
n ~C!

Zi21~C21!
, ~22!

Mi
n~C!5INT@Qi

n~C!# if Qi
n~C!.1

51 if Qi
n~C!<1. ~23!

The enrichment factormi21
n is evaluated from the ratio o

Mi
n to Mi21

n . This procedure always keeps the chain mu
plicity approximately proportional to the Boltzmann factor
the chain at the just-previous step:

Pi
n~C!5

Mi
n~C!

Mi21
n ~C!

, ~24a!

mi21
n ~C!5INT@Pi

n~C!# if Pi
n~C!.1

51 if Pi
n~C!<1. ~24b!

For i , 5 the Boltzmann population of the chain collection
completely satisfied in CCB. Therefore, we set the ch
multiplicity to unity

M0
n5M1

n5•••5M4
n51. ~24c!

The choice ofp in Eq. ~22! is arbitrary. Too large a
value ofp could lead to an exploding number of samples
highly correlated configurations. Too small a value mig
lead to too few chains per cluster. For thePE example con-
sidered here, we usedp51 since it results in enriched chain
having nearly equal contribution to the partition function.

To obtain an initial guess for the partition function
Zi(0), ashort non-BFB run is performed.~For this study we
sampled 200 chains prior to BFB sampling.! If the partition
function used in the initial guess is too small, an extraor
narily large enrichment factor might occur for clusters ju
after beginning the BFB sampling and ruin the MC sa
pling. To avoid this we can introduce an upper limit for th
enrichment factor~arbitrarily without any additional bias!.
For the example reported here no special controls of the
richment factor were needed. Equation~24! gave automatic
control of the number of chains generated by BFB sampli
The average number of generated chains per seed a
, No. 16, 22 April 1997
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6726 J. Sadanobu and W. A. Goddard III: Boltzmann biased Monte Carlo for polymer chains
tended to become large at low temperature. It ranged f
3.5 at the highest temperature to 11.2 at lowest one foN
5400.

IV. PROCEDURE

A. CCB sampling

Prior to the chain sampling, the torsion energy was c
culated for a fixed number of grid points~in this study we
used 200 equally separated grid points from 0 to 2p!.
WIRS, the normalized TWF for IRS, is then evaluated usi
numerical integration forzIRS as in Eq.~10b!. This uses the
auxiliary distributionPIRS(f) in

PIRS~f!5E
0

f

WIRS~f8!df8. ~25!

We define a local Cartesian reference frame for each bon
the chain.16 The axial transformation matrixt i is

t i5F cosu
sin u cosf i

sin u sin f i

sin u
2cosu sin f i

2cosu sin f i

0
sin f i

2cosf i

G . ~26a!

The first atom is set at origin andt2 and t3 are set as

t25F 1 0 0

0 1 0

0 0 1
G ,

~26b!

t35F cosu sin u 0

sin u 2cosu 0

0 0 1
G .

The position vector,Ri , of atom i is calculated as

Ri5Ri211T i•b,

T i5 (
k52

i

tk , ~26c!

bt5~ l ,0,0!.

Hereb is the bond vector andT j is the transformation matrix
from the local reference frame on thej th bond to the original
reference frame. A random numberj, uniformly distributed
in the interval@0, 1!, is drawn and the fourth torsion ang
f4 is obtained by requiring

PIRS~f4!5j. ~27!

For i.4 after sampling the (i21)th torsion, all nonbond
distances are calculated to evaluate the energy and als
define an atom group$k% i , whose elements consist of th
neighbors of the (i21)th atom

$k% i5$kiRi212Rku,Rc ;1<k, i25%. ~28!

The coordinates of all atoms in the list$k% i are transformed
into the local reference frame on the (i21)th bond by using
the inverse matrix (T i21)

215Ti21
t ,

Rk85~T i21!
21
•Rk5T i21

t
•Rk . ~29!
J. Chem. Phys., Vol. 106
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In the local reference frame the coordinates of atomi for a
trial move at theqth grid pointf i

q is

rq
t 5~ l cosu,l sin u cosf i

q ,l sin u sin f i
q!, ~30!

which is independent ofi if the same type of grid is used fo
all torsions.gCCB(f i) is evaluated as

gCCB~f i
q ;f4 ,...,f i21!

5gIRS~f i
q!expF2b(

$k% i

ELJ~ uRk82rqu!G . ~31!

Then zCCB andWCCB are evaluated by using the above e
pressions ofgCCB. The auxiliary distributionPCCB is ob-
tained by

PCCB~f i !5E
0

f i
WCCB~f;f4 ,...,f i21!df. ~32!

B. BFB sampling

In the BFB method we cannot foresee how many cha
will be generated in a cluster. Thus we cannot know h
much memory is needed to store the information for
growing branches of the chains in a cluster. Consequently
use a memory-saving algorithm, in which just one chain
grown at a time.

FIG. 2. Frequency distribution of the logarithmic potential energy atTr
530 for N550. ~a! CCB ~solid line!, IRS ~broken line!, and SS~dotted
line!. ~b! CCB ~dotted line! and CCBB~solid line!. Note that~b! is for just
the range of logH from 2 to 3.
, No. 16, 22 April 1997
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6727J. Sadanobu and W. A. Goddard III: Boltzmann biased Monte Carlo for polymer chains
FIG. 3. Convergence of CCB, IRS, and SS simulations forN550,
Tr530. ~a! Free energy (A) and ~b! squared end-to-end distance (^R2&).
Plotted is the ratio of the standard deviation to the average value for
property vs the total number of sample chainsNc .

FIG. 4. Convergence of the CCB and CCBB methods forN550 ~broken
line! andN5200 ~solid line! at Tr530. ~a! Free energy and~b! squared
end-to-end distance.
J. Chem. Phys., Vol. 106

Downloaded¬09¬Mar¬2004¬to¬131.215.16.37.¬Redistribution¬subject¬
For BFB sampling we simply complete construction
one chain at a time. For clusterk 1 1, the i index starts at
i54 and increases toi5N. For each suchi we consider
eachi 8 from i toN. First we determine the enrichment fact
mi 8 , using Eq.~22! and evaluate the running average of t
partition function,Zi 8(k11). For each stepi 8 the chain gen-
eration counterFi 8 is then defined and set toFi 85mi 8 . After
calculatingFi from i 85 i to i 85N, we then start ati 95N
and work fromN back toi . EachFi 9 is checked to determine
if it is greater than unity. WhenFi 9.1 for i 9. i21, the
i 9th torsion is sampled once more andFi 9 is reduced by

ch

FIG. 5. Comparison of properties forTr530 andN550. ~a! Free energy
and ~b! end-to-end distance. Error bars show the standard deviations
~open circle!, IRS ~filled circle!, CCB ~triangle!, and CCBB~open square!.

TABLE I. EstimatedNc and computer timesa for convergence of the free
energy to 0.1%~N5 50,Tr 5 301!.

Nc

Time/chain
ms

Total time
s

Ratio
to CCBB

SS 109 6.4 6.43106 350 000
IRS 1.73106 6.6 1.13104 600
CCB 103 90 90 5
CCBB 43102 45 18 1

aUsing theIRIS CRIMSONof Silicon Graphics Inc.
, No. 16, 22 April 1997
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6728 J. Sadanobu and W. A. Goddard III: Boltzmann biased Monte Carlo for polymer chains
unity. A new chain is grown from stepi 9 to N and a new
value ofmi 9 is evaluated for each step. The same proced
is repeated until there is noFi 9 larger than unity. At this
point the (k11)th cluster is completed, and the (k12)th
cluster can be started. The flow chart is shown in the App
dix.

V. EFFICIENCY

To compare the effectiveness of these various metho
we analyzed the distribution of sampled energies. In Fig. 2~a!
the distributions of the logarithmic energy,f (logH), are
compared for SS, IRS, and CCB. Here simulations were p
formed for a polymer withN550 atTr530 ~which corre-
sponds to theQ temperature!. f (logH) is defined as the nor-
malized occurrence rate of the total potential energy betw
logH and logH1d logH during the course of a simulation
Figure 2 shows that CCB and CCBB place nearly all sa
pling points in the range (H5102.25–102.7) which contrib-
utes significantly to the Boltzmann factor. In contrast IR
leads to a maximum in the distribution function atH51010

~with only 0.1% of the points belowH5102.7!. SS leads to a

FIG. 6. Computation time for SS, IRS, CCB, and CCBB atTr530 ~on the
SGI IRIS CRIMSON!. ~a! The time per sample chain vs the number of atoms
a chain.~b! The time to obtain an accuracy of 0.1% in the free energy.
J. Chem. Phys., Vol. 106
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maximum in the distribution function atH510100 ~with only
0.001% of the points belowH5102.7!. This shows clearly
the high efficiency of CCBB sampling.

Figure 3 shows the rates of convergence for the Helm
holtz free energyA and for the squared end-to-end distanc
^R2&. These are evaluated from 10 independent runs for ea
method to obtain the standard deviations from the average
value. The simulation conditions were the same as in Fig.
For an 0.1% level of uncertainly inA and^R2&, IRS requires
a factor of 400 fewer chains than SS while CCB requires
factor of 1300 fewer chains than IRS. Thus CCB requires
factor of 520 000 fewer chains than SS.

In Fig. 2~b! the f (logH) distributions are compared for
CCB and for CCBB. Introduction of BFB into CCB shifts
the peak off (logH) lower by about 10% in logH. As shown
in Fig. 4, the convergence ofA was accelerated by about 5
times forN550 and 30 times forN5200. We see that BFB
accelerates the convergence of^R2& by a factor of about 30
for N550 and about 5 forN5200.

Extrapolating the results in Fig. 3, we estimate~see
Table I! that to obtain an accuracy of 0.1% inA ~for
N550! the number of chains required (Nc) is about 10

9 for
SS, 1.73 106 for IRS, 103 for CCB, and 400 for CCBB.

Figure 5 shows the absolute values of the running ave
age ofA and ^R2& for each method. Also shown are the

FIG. 7. Properties for various temperatures of isolated polyethylene cha
as a function of the number of atoms.~a! Free energy, and~b! squared
end-to-end distance. This indicates that theQ temperature is about
Tr530.
, No. 16, 22 April 1997
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6729J. Sadanobu and W. A. Goddard III: Boltzmann biased Monte Carlo for polymer chains
uncertainties. The converged results coincide with e
other, validating the bias correction for each method.

Figure 6 compares the dependence of the computa
time per chain on the number of atoms,N. Table I uses these
numbers to estimate the real time to convergeA to 0.1% for
N550 andTr530. Introducing BFB into CCB reduces th
computation time per chain dramatically since the chains
not all independent. In this case the average numbe
chains belonging to the same cluster is about ten. The re
is that compared with a unit time for CCBB, CCB requir
about 5 for the same 0.1% accuracy, while IRS requ
about 600, and SS requires about 350 000. For larger
tems the efficiency of CCBB increases relative to IRS or S

Figure 7 illustrates the results of evaluatingA and ^R2&
using CCBB for a wide temperature range. From the prop
tionality of A and^R2& to the number of chainN, we expect
the theta temperature of the model to be aroundTr530.
Reference 13 reported similar plots for a simpler model o
continuous system. With CCBB we are able to treat a m
longer chain at temperatures much further below the th
temperature, finding good convergence for both propertie

VI. CONCLUSION

This paper develops two highly efficient variants of t
direct Monte Carlo method:

~i! Continuous configurational biased~CCB! sampling
and

~ii ! Boltzmann factor biasing~BFB!.

FIG. 8. The flow of BFB sampling.
J. Chem. Phys., Vol. 106
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We validated the bias correction for weighting the torsi
and chain enrichments. Combining these two types of s
plings ~CCBB! dramatically improves MC convergence
This CCBB method provides the first practical approach
direct evaluation of the partition function for long polyme
chains. It also allows evaluation of any configurational d
pendent physical properties simultaneously with the free
ergy.

This paper considered the simple model of an isola
single chain with a united atom force field. However, CCB
is easily extended to multichain systems, to more reali
force fields, and to the condensed state. For example,
have applied this method to evaluating the mixing free
ergy for polymer blends.17
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APPENDIX

The flow of BFB sampling.~See Fig. 8.!

Initialize: Construct Z̄i(0) i54,...,N. Denote as cluster
k50.

Start clusterk5k 1 1 with i54.
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