Cyclooctyne-based reagents for uncatalyzed click chemistry: A computational survey†

Kimberly Chenoweth,‡ David Chenoweth§ and William A. Goddard III*

Received 12th June 2009, Accepted 16th September 2009
First published as an Advance Article on the web 9th November 2009
DOI: 10.1039/b911482c

With the goal of identifying alkyne-like reagents for use in click chemistry, but without Cu catalysts, we used B3LYP density function theory (DFT) to investigate the trends in activation barriers for the 1,3-dipolar cycloadditions of azides with various cyclooctyne, dibenzocyclooctyne, and azacyclooctyne compounds. Based on these trends, we find monobenzocyclooctyne-based reagents that are predicted to have dramatically improved reactivity over currently employed reagents.

Introduction

An explosion of techniques has energized the bioorthogonal ligation chemistry field, with new methodologies involving oxime and hydrazone formation, Staudinger ligation, and azide–alkyne [3+2] cycloaddition.1 Although many areas of chemistry benefit from click chemistry, the toxicity of the Cu catalyst in the [3+2] azide–alkyne cycloaddition has prohibited its use from click chemistry, the toxicity of the Cu catalyst in the [3+2] azide–alkyne cycloaddition has prohibited its use.

Thus, room-temperature labeling reagents that avoid using copper are highly desirable. Similarly, click reactions provide a means for unique surface functionalization and labelling strategies with application in nanotechnology and surface science. For example, the Heath group and others have developed strategies for functionalizing Si and Au surfaces with azides, which could be attached to alkyne-terminated labels or rotaxanes for sensors or nanomechanical systems.2 Here it would be most useful to avoid the requirement of copper catalysts while accelerating the reactions to be fast at room temperature.

Recently, the Bertozzi group3 demonstrated a new strain-release cyclooctyne labelling reagent (1, Scheme 1) that proceeds in the absence of a Cu catalyst at physiological temperatures, although with a ca. 52-fold reduction in reaction rate.4 The increased reactivity of cyclooctyne toward [3+2] cycloaddition has been attributed to strain release, and estimates of the cyclooctyne ring strain range from 10–19 kcal/mol.4 The ground-state destabilizing effect of the triple bond is thought to drive the bioorthogonal ligation reactions (e.g. attachment of chemical reporter molecules) in the absence of a catalyst; however, this has been challenged with the concept of dipole distortion.5,6 Bertozzi demonstrated that gem-difluoro substitution α to the alkyne leads to a reaction rate 63 times faster than the simple cyclooctyne, which has been attributed to the greater LUMO-lowering effect of the fluoro substituent.6 In addition, dibenzocyclooctyne reagents have allowed visualization of glycoconjugates in living cells using confocal microscopy while a difluorinated cyclooctyne derivative has proven useful for investigating in vivo glycan trafficking dynamics.7,8

First, we investigated the best current bioorthogonal cyclooctyne-based labelling reagents to gain insight into reactivity patterns associated with electronic, steric, and strain effects by assessing trends in the activation energies, thus providing a basis of comparison for potential monobenzocyclooctyne reagents. In addition, we investigated the decomposition mechanism observed for a monofluorinated cyclooctyne reagent. Next, we assessed dibenzocyclooctyne- and azacyclooctyne-based reagents and compared the calculated barriers to the cyclooctynes. Finally, we investigated new monobenzocyclooctynes and compared the calculated barriers to that of cyclooctyne and dibenzocyclooctyne reagents. To date, these monocyclooctynes have not been used in bioorthogonal ligation chemistry but provide improved reactivity compared to previously reported cyclooctyne-based reagents.

Computational details

All calculations were performed using the B3LYP hybrid DFT functional9 with the 6-311G** basis set2 as implemented in the Jaguar 6.5 software package.10 Vibrational frequencies have been calculated at all stationary points to obtain zero-point energies (ZPE) and free energies. All stationary points have been identified as local minima (zero imaginary frequencies) or transition states (TS) (one imaginary frequency). We should emphasize that the interest here is in identifying the cyclooctyne reagent with the lowest barrier for cycloaddition to an azide (click chemistry). These DFT calculations may overestimate absolute reaction energies by a few kcal/mol.11

Materials and Process Simulation Center, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA. E-mail: wag@wag.caltech.edu; Fax: +1 (626) 395-2731
† Electronic supplementary information (ESI) available: Absolute energies and cartesian coordinates. See DOI: 10.1039/b911482c
‡ Current address: Department of Chemistry, Smith College, Northampton, Massachusetts 01063, USA.
§ Current address: Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Table 1 Activation energy (in kcal/mol) for transition states TS1 and TS2 in Fig. 1. Best is 1e, confirmed experimentally.

<table>
<thead>
<tr>
<th>Reactant</th>
<th>R₁</th>
<th>R₂</th>
<th>ΔE¹</th>
<th>ΔG¹</th>
<th>TS1</th>
<th>TS2</th>
<th>TS1</th>
<th>TS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>H</td>
<td>H</td>
<td>12.8</td>
<td>—</td>
<td>24.9</td>
<td>—</td>
<td>24.9</td>
<td>—</td>
</tr>
<tr>
<td>1b</td>
<td>Me</td>
<td>H</td>
<td>13.7</td>
<td>13.6</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
</tr>
<tr>
<td>1c</td>
<td>Me</td>
<td>F</td>
<td>13.7</td>
<td>11.3</td>
<td>26.1</td>
<td>24.7</td>
<td>24.7</td>
<td>24.7</td>
</tr>
<tr>
<td>1d</td>
<td>H</td>
<td>F</td>
<td>12.6</td>
<td>10.5</td>
<td>24.6</td>
<td>23.4</td>
<td>23.4</td>
<td>23.4</td>
</tr>
<tr>
<td>1e</td>
<td>F</td>
<td>F</td>
<td>12.1</td>
<td>9.3</td>
<td>24.6</td>
<td>22.1</td>
<td>22.1</td>
<td>22.1</td>
</tr>
</tbody>
</table>

Results and discussion

Cyclooctyne-based reagents

We first studied a series of model fluorinated cyclooctynes analogous to the bioorthogonal reagents developed in the Bertozzi group. To determine how various substituents affect the reactivity of cyclooctyne with methyl azide, we calculated the activation energies (Table 1) for formation of both triazole regioisomers for a range of substituents (Fig. 1). We find that methyl substitution adjacent to the triple bond of cyclooctyne (1b), leads to a slight increase in the activation barrier; however, fluorination at the α-position (1c, 1d, 1e) leads to a consistent decrease in the activation energy as the number of fluorines increase. In addition, changing from the difluorinated cyclooctyne (1e) to a mono-fluorinated cyclooctyne (1d) increases the azide–alkyne cycloaddition barrier by ΔΔG¹ =1.3 kcal/mol for TS2, which is consistent with the factor of ~10 decrease in reaction rates observed experimentally. The reaction of gem-difluorocyclooctyne (1e) with methyl azide leads to a transition state barrier for 1e-TS2 of 22.1 kcal/mol, which is ΔΔG¹ = 2.8 kcal/mol (ΔΔE¹ = 3.5 kcal/mol) lower in energy than reaction with cyclooctyne (1a), leading to a 106-fold rate enhancement. This is consistent with the observed 63-fold rate enhancement (from 1.2 x 10⁻¹⁰ M⁻¹ s⁻¹ to 7.6 x 10⁻¹² M⁻¹ s⁻¹) for similar substrates. [The slight disparity in rate and regioselectivity (63 vs. 106) may be attributed to the solvation effects and the difference between the benzyl azide used in experiments compared to our use of methyl azide as a model system.] Our calculated activation barriers are consistent with more recent theoretical studies for reaction with methyl azide, and the trends in the barriers are consistent with reaction with phenyl azide.

Decomposition of the product (2c) from cyclooctyne 1c

Interestingly, the Bertozzi group observed that when reacting reagents analogous to 1c with azides one of the triazole regioisomers underwent decomposition where the other isomer was stable. Experimental observations have indicated that fluorination at a tertiary carbon position α to the alkyne in a cyclooctyne-based reagent can enhance the elimination processes. To gain insight into the experimentally observed regioisomeric decomposition of the triazole products formed from cycloaddition of the monofluorinated cyclooctyne 1c, we propose a reaction intermediate to the decomposition reaction and a mechanism based on steric A¹,3 strain that precludes decomposition of product isomer 3c (Fig. 2). This suggests the possibility of a resonance-assisted (hyperconjugation involving the NCH₃ lone pair) steric-free pathway, as a limiting case, that proceeds through a carbocation intermediate (2c-cation), formed via fluorine elimination, to the decomposition product 2c-OH resulting from S₅1,1-type attack by water, with the actual mechanism probably lying somewhere on the continuum between the S₅1 and S₅2 extremes. We optimized the structures for the carbocation intermediates in the decomposition pathway (see Fig. 2), leading to a DFT energy for carbocation 3c-cation higher by ΔE = 12.7 kcal/mol than that of 2c-cation, due primarily to A¹,3 strain. This precludes full resonance stabilization by the triazole ring, as shown by the resulting angles in Fig. 2. This energetic difference in carbocations explains the decomposition of 2c versus the stability of 3c, providing insight into the importance of the appropriate substitution α to the alkyne and A¹,3 strain for future reagent design.

![Fig. 1](image1.png) Azide–cyclooctyne reaction pathways. R₁ (pink) and R₂ (orange) are defined in Table 1.

![Fig. 2](image2.png) Decomposition pathway for α-monofluorinated cyclooctyne-based reagents.
Azacyclooctyne-based reagent

Next, we evaluated the barriers for azide–alkyne cycloaddition for a heterocyclic and heteroatom-substituted cyclooctyne-based reagent (4, Fig. 3). Interest in this reagent lies in the experimental observation that it improves sensitivity of azide detection due to its superior polarity and water solubility due to the presence of the methoxy groups. Experimentally, the azacyclooctyne, 6,7-dimethoxazacyclooct-4yne (DIMAC), was found to provide a rate enhancement of 2.5-fold over 6,7-dimethoxyazacyclooct-4yne (DIMAC), was found to provide a rate enhancement of 2.5-fold over cyclooctyne (1a) for the 1,3-dipolar cycloaddition reaction with benzyl azide (from 1.2 × 10^11 M^-1 s^-1 to 3.0 × 10^11 M^-1 s^-1). Our calculations find a similar increase in rate for a model DIMAC compound (4) over cyclooctyne (1a) with a decrease in barrier height of ΔG^‡ = 0.3 kcal/mol, corresponding to a rate enhancement of ~2.

![Fig. 3](image-url) Azide–azacyclooctyne cycloaddition reaction pathway.

Dibenzocyclooctyne-based reagents

Another class of reagents investigated for use as bioorthogonal reagents is the dibenzocyclooctynes. In order to compare these systems to the nonbenzoid cyclooctyne-based reagents, we calculated the activation energies for cycloaddition with methyl azide (Fig. 4). Structure 7f with R_4 = R_5 = H is comparable to the reagent with R_4 = OH and R_5 = H. We find that the cycloaddition barrier for 7f is 12.3 kcal/mol (Table 2), which is 0.5 kcal/mol lower than for cyclooctyne 1a (Table 1). It has been proposed that the biaryl substitution would increase ring strain and provide conjugation with the alkyne, resulting in improved reactivity. However, we find from our calculations that the resulting steric interaction between the methyl group on the azide and the hydrogen of the phenyl group (A^1,3 strain) competes directly with the activating effects of the aryl ring, resulting in hampered reactivity compared to Bertozzi’s fluorinated cyclooctyne-based reagents. The rate constants for dibenzocyclooctynol were reported to have a rate acceleration of approximately three orders of magnitude over that of cyclooctynol. However, our calculations find very similar barriers between cyclooctyne and a dibenzocyclooctyne (e.g., with cyclooctyne, leading to a factor of 2 enhancement). The origin of this discrepancy might be related to solvent effects, reaction conditions, the use of benzyl azide instead of methyl azide, or differences in the substrates. Based on our calculations and results in the literature, the origin of this discrepancy might be related to the specific experimental reaction conditions, and it would be useful for the rates of the various cyclooctyne reagents to be examined in a thorough experimental study. In addition, we find that para-substitution on the phenyl group has very little inductive effect and does not significantly reduce the activation barriers (Table 2).

Table 2 Activation energy (kcal/mol) for transition state TS3 in Fig. 2

<table>
<thead>
<tr>
<th>Reactant</th>
<th>R_4</th>
<th>ΔE^‡</th>
<th>ΔG^‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a</td>
<td>NH_2</td>
<td>12.2</td>
<td>25.5</td>
</tr>
<tr>
<td>7b</td>
<td>OMe</td>
<td>11.6</td>
<td>24.9</td>
</tr>
<tr>
<td>7c</td>
<td>OEt</td>
<td>11.7</td>
<td>25.1</td>
</tr>
<tr>
<td>7d</td>
<td>N(CH_3)_2</td>
<td>12.2</td>
<td>25.7</td>
</tr>
<tr>
<td>7e</td>
<td>H</td>
<td>12.3</td>
<td>25.5</td>
</tr>
<tr>
<td>7f</td>
<td>F</td>
<td>11.8</td>
<td>25.2</td>
</tr>
<tr>
<td>7g</td>
<td>Cl</td>
<td>11.7</td>
<td>25.0</td>
</tr>
<tr>
<td>7h</td>
<td>NO_2</td>
<td>11.2</td>
<td>25.1</td>
</tr>
<tr>
<td>7i</td>
<td>CN</td>
<td>11.3</td>
<td>24.7</td>
</tr>
</tbody>
</table>

![Fig. 4](image-url) Azide–dibenzocyclooctyne cycloaddition reaction pathways. R_4 is hydrogen, and R_5 (pink) is defined in Table 2.

Benzocyclooctyne-based reagents

Based on these new insights into azide–alkyne cycloadditions, we propose new cyclooctyne reagents bearing a single aryl substituent (Fig. 5) under the hypothesis that decreased A^1,3 strain, transannular hybridization-induced ring strain, and electron-withdrawing substituents could yield a superior reagent with improved reactivity. We find that the position of the phenyl group with respect to the alkyne has a significant effect on the reactivity toward cycloaddition. Thus fusing a benzene ring to carbon 3–4 of the cyclooctyne system 9-TS1 and 9-TS2 (Fig. 5) leads to the largest barriers to cycloaddition, 25.3 and 24.9 kcal/mol respectively. Moving the aryl fusion to the 5–6 carbon position of the cyclooctyne system decreases the barrier heights for 10-TS1 and 10-TS2 to 23.3 and 23.5 kcal/mol, respectively. This decrease in activation energy and the energetic switch in regioisomeric activation energies is presumably due to superposition of reduced A^1,3 interactions and decreased electronic effects from the aryl group. Fusing the aryl group at the 5–6 carbon position of the cyclooctyne ring 11-TS further decreases the barrier for cycloaddition with methyl azide to 22.1 kcal/mol, making it competitive with some of the best fluorinated cyclooctyne systems (1e with 22.1 kcal/mol). In addition, we find that a 6-membered aromatic ring in this position provides increased angle compression, leading to improved reactivity, whereas a 5-membered aromatic ring

© This journal is © The Royal Society of Chemistry 2009
4.4 M

57 times faster, and suggesting a rate of 57

science. In addition, note that the simple benzocyclooctyne

chemistry for applications in biology, nanotechnology, and surface

and reactivities to enable room-temperature copper-free click

of benzocyclooctyne reagents will provide a range of stabilities

5258

results in less angle compression and decreased reactivity (see Fig.

S1†). These benzocyclooctynes have been reported to be isolable,

but they have not been utilized for copper-free click chemistry.10

Combining the positional effects of the aryl substituent and the

LUMO lowering electron-withdrawing effects of the gem-difluoro

substituent, we find significantly decreased activation energies

to 19.7 kcal/mol for the 12-TS2 cycloaddition transition state

structure shown in Fig. 2 (and 21.7 kcal/mol for 12-TS1). This is

lower than the barrier for 1e (ΔG‡ = 2.4 kcal/mol), making it

57 times faster; and suggesting a rate of 57 × (7.6 × 10⁻² M⁻¹ s⁻¹) =

4.4 M⁻¹ s⁻¹.11 Since 1e has been observed to be 52 times slower than

the copper-catalyzed system, the gem-difluorcyclooctyne (12)

should exhibit activity comparable to or faster than the

copper-catalyzed click reaction.16 We expect that this new class

of benzocyclooctyne reagents will provide a range of stabilities and

reactivities to enable room-temperature copper-free click

chemistry for applications in biology, nanotechnology, and surface

science. In addition, note that the simple benzocyclooctene 11 has

the same barrier and rate as the best previous copper-free click

reagent, gem-difluorcyclooctene (1e), making it a potentially

useful reagent.

This class of benzocyclooctynes takes advantage of the optimal

placement of sp³ centers for the enhancement of ring strain and

the proper placement of electron-withdrawing substituents for

LUMO-lowering effects while avoiding the detrimental effects of

A¹¹ interactions.

Conclusions

This exercise demonstrates how modern computational chemistry

provides a valuable tool for a priori design of optimal reagents

for novel applications in biological systems and materials science,

dramatically reducing the number of experiments required to

navigate structure-sequence space. In particular, we show that

combining transannular hybridization-induced ring strain with

proper placement of LUMO-lowering electron-withdrawing sub-

stituents, while avoiding deleterious effects of A¹¹ interactions,

provides guiding principles for designing superior cyclooctyne-

based reagents with improved reactivity.

References

(b) M. Kohn and R. Breinbauer, Angew. Chem., Int. Ed., 2004, 43,

3106; (c) R. Huisgen, Angew. Chem., Int. Ed. Engl., 1963, 2, 565; (d) V. V.

Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem.,

Int. Ed., 2002, 41, 2596; (e) H. C. Kolb, M. G. Finn and K. B. Sharpless,

2 (a) R. D. Rohde, H. D. Agnew, W-S. Yeo, R. C. Bailey and J. R. Heath,

Ebinia, B. Kakaradov, J. P. Collman, E. T. Kool and C. E. D. Chisdey,

J. Am. Chem. Soc., 2005, 127, 8600; (c) N. K. Devaraj, P. H. Dinolfo,

2004, 126, 15046; (b) N. J. Agard, J. M. Baskin, J. A. Prescher, A. Lo

and C. R. Bertozzi, ACS Chem. Biol., 2006, 1, 644; (c) J. M. Baskin,

J. A. Prescher, S. T. Laughlin, N. J. Agard, P. V. Chang, I. A. Miller, A.

2007, 104, 16793; (d) S. T. Laughlin, J. M. Baskin, S. L. Amacher and

C. R. Bertozzi, Science, 2008, 320, 664; (e) E. M. Sletten and C. R.

4 (a) G. Wittig and A. Krebs, Chem. Ber., 1961, 94, 3260; (b) R. B. Turner,

790; (c) J. F. Liebman and A. Greenberg, Chem. Rev., 1976, 76, 311;

5 X. Ning, J. Guo, M. A. Wolfert and G. J. Boons, Angew. Chem., Int.

Ed., 2008, 47, 2253.

7 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys.,

1980, 72, 650.

8 (a) Jaguar 6.5, Schrodinger, LLC: Portland, OR, 2005; (b) B. H. Greetly,

4028; (c) D. J. Tannor, B. Marten, R. Murphy, R. A. Friedsner, D. Sitkoff,

A. Nicholls, M. Ringnalda, W. A. Goddard III and B. Honig, J. Am.

Chem. Soc., 2009, 131, 8121; (b) D. H. Ess, G. O. Jones and K. N. Houk,

11 Structures were rendered using UCSF Chimera, Resource for Biocomputing, Visualization, and Informatics, University of California, San

Francisco (supported by NIH P41 RR-01081). See: E. F. Pettersen,
