Gold Catalysis

Gold-Catalyzed Intramolecular Aminoarylation of Alkenes: C–C Bond Formation through Bimolecular Reductive Elimination**

William E. Brenzovich, Jr., Diego Benitez, Aaron D. Lackner, Hunter P. Shunatona, Ekaterina Tkatchouk, William A. Goddard, III, and F. Dean Toste*

The utility of homogeneous gold complexes as carbophilic π-acids has been well-established, with numerous reports of gold-catalyzed reactions that were initiated by addition of nucleophiles into unsaturated carbon–carbon bonds.[3] Although protodeauration is common, several reactions have been developed in which the resulting organogold intermediate was intercepted. For example, nucleophilic reagents have been employed to intercept cationic organogold intermediates that are derived from reactions with π-bonds.[2] In contrast, reactions involving neutral organogold intermediates are terminated by reaction of the resulting carbon–gold bond with an electrophile. Although the electrophile is often a proton, gold(I)-catalyzed carboheterofunctionalization reactions using carbon-based electrophiles have been reported.[3] On the basis of recent reports of gold-catalyzed oxidative transformations,[4] we envisioned that the oxidized analogues of these gold(I) intermediates might also be susceptible to reactive nucleophilic reagents.

In line with our efforts in the area of gold-catalyzed hydroamination reactions,[5,6] we hypothesized that oxidized organogold intermediates that are derived from addition of an amine to a π bond might react with nucleophilic boronic acids in an intramolecular aminoaarylation reaction.[7] Whilst our initial studies using allenyl tosylamides were unsuccessful, we were encouraged to find that the Ph3PAuCl-catalyzed reaction of allenyl tosylamide with excess phenylboronic acid and Selectfluor provided a modest yield of the desired aminoarylation product, Table 1, entry 1). Using a more cationic gold species, such as Ph3PAuOTf (Table 1, entry 2), led to diminished reactivity. On the basis of our previous observation of counterion effects in gold-catalyzed reactions,[8] we examined the impact of the counterion on the aminoaarylation reaction. Whilst the use of Ph3PAuOBz as a catalyst resulted in decreased conversion (Table 1, entry 3), Ph3PAuBr led to a significant increase in the yield of 2 (Table 1, entry 4). The corresponding gold(I) iodide (Table 1, entry 5) provided 2 in only trace amounts, as the iodide itself is likely susceptible to oxidation by Selectfluor.

To optimize the reaction further, we sought to identify the active gold species. The combination of either Ph3PAuCl or Ph3PAuBr with Selectfluor and PhB(OH)2 led to the formation of a major signal in the 31P NMR spectrum at δ = 44.28 ppm, which we identified as [Ph3PAu]BF4. Moreover, in situ monitoring of the reaction mixture by 31P NMR showed this cationic complex to be the dominant gold species in solution during the catalytic reaction; however, independently prepared [(Ph3P)2Au]BF4 was found to produce 2 in inferior yield (Table 1, entry 6) to those obtained when Ph3PAuBr was employed as a catalyst. As strong aurophilic interactions are maintained for Au(I) species,[8] we reasoned that the use of bimetallic[9] gold complexes as catalysts might minimize the formation of this type of bisphosphogold(I) species. We were delighted to find that [dppm(AuBr)2] was an excellent catalyst at room temperature (Table 1, entry 7).[10,11] The optimized conditions appear to tolerate a wide variety of sulfonamides and to be independent of substitution pattern (Table 2); in addition, trifluoroacetamides are reasonable substrates for the reaction (Table 2, entry 1). The cyclization provides N-protected pyrrolidines at room temperature, even for substrates that do not have the benefit of the Thorpe–Ingold effect (Table 2, entry 2). The ability to form six-membered rings (Table 2, entry 3) is notable, with

** F.D.T. gratefully acknowledges NIHGM (R01 GM073932-04S1), Novartis, and Amgen for funding and Johnson Matthey for a generous donation of AuCl3. The MSC computational facilities were funded by grants from ARCO-DURIP and ONR-DURIP.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201002739.

The optimized conditions appear to tolerate a wide variety of sulfonamides and to be independent of substitution pattern (Table 2); in addition, trifluoroacetamides are reasonable substrates for the reaction (Table 2, entry 1). The cyclization provides N-protected pyrrolidines at room temperature, even for substrates that do not have the benefit of the Thorpe–Ingold effect (Table 2, entry 2). The ability to form six-membered rings (Table 2, entry 3) is notable, with

[] F.D.T. gratefully acknowledges NIHGM (R01 GM073932-04S1), Novartis, and Amgen for funding and Johnson Matthey for a generous donation of AuCl3. The MSC computational facilities were funded by grants from ARCO-DURIP and ONR-DURIP.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201002739.
Communications

Table 2: Substrate scope for the aminoauration reaction.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>T [°C]</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>PhNTFA</td>
<td>60</td>
<td>51</td>
</tr>
<tr>
<td>2</td>
<td>NHTs</td>
<td>5a</td>
<td>RT</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>NHTs</td>
<td>8</td>
<td>40</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>NHTs</td>
<td>10</td>
<td>RT</td>
<td>72[2]</td>
</tr>
<tr>
<td>5</td>
<td>NHTs</td>
<td>12</td>
<td>RT</td>
<td>72[2]</td>
</tr>
<tr>
<td>6</td>
<td>NHTs</td>
<td>14</td>
<td>RT</td>
<td>92[2]</td>
</tr>
<tr>
<td>7</td>
<td>NHTs</td>
<td>16</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>8</td>
<td>NHTs</td>
<td>18</td>
<td>40</td>
<td>63</td>
</tr>
</tbody>
</table>

[a] Yield of isolated product. [b] d.r. = 1.5:1. [c] d.r. = 1.1:1. [d] d.r. = 1.8:1.
TFA = trifluoroacetic acid.

Table 3: Sulfonyl and boronic acid scope for the aminoauration reaction.14

<table>
<thead>
<tr>
<th>Entry</th>
<th>R1</th>
<th>R2</th>
<th>Product</th>
<th>T [°C]</th>
<th>Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>H</td>
<td>19</td>
<td>RT</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>Cl</td>
<td>23</td>
<td>40</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>Me</td>
<td>25</td>
<td>40</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>CO₂Me</td>
<td>26</td>
<td>40</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>CHO</td>
<td>27</td>
<td>40</td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>Ph</td>
<td>H</td>
<td>28</td>
<td>RT</td>
<td>81</td>
</tr>
<tr>
<td>7</td>
<td>Ph</td>
<td>OMe</td>
<td>29</td>
<td>RT</td>
<td>12[2]</td>
</tr>
</tbody>
</table>

[a] Reactions conditions: 5 (100 μmol), boronic acid (200 μmol), Selectfluor (150 μmol), and [dppm(AuBr)₂] (3 μmol) in MeCN (1.0 mL) for 12 h. [b] Recovered 5a = 74%.

only a slight increase in temperature required. We have also achieved mild access to functionalized 2,3-dihydroindole and 1,2,3,4-tetrahydroisoquinoline products (Table 2, entries 7 and 8). The reaction tolerated a variety of sulfonamide protecting groups and boronic acids (Table 3), both electron poor and electron rich. More hindered and more-electron-poor boronic acids reacted sluggishly under the standard room temperature conditions, but functional yields were obtained by heating the reaction mixture to 40°C. Sensitive moieties, such as aldehydes, readily withstood the mild reaction conditions. Reduced yields were observed with highly electron-rich coupling partners, such as para-methoxyphenylboronic acid, owing to competing oxidation of the boronic acid by Selectfluor.

Several possibilities exist for the mechanism of this transformation. First, we considered the initial cyclization event. Treatment of 1 with neutral phosphinegold(1) halide complexes in the absence of Selectfluor produced no detectable reaction. Cationic Au¹ species are typically required for addition to π bonds; however, in this case, cationic triphenylphosphinegold(1) complexes failed to catalyze the reaction (Table 1, entry 2). Moreover, treatment of alkylgold(1) complex 30[2] with phenylboronic acid and Selectfluor failed to produce pyrrolidine 2 [Eq. (1)]. Therefore, we surmised that oxidation of Au¹ into Au³ must precede the aminoauration step.

Next, we considered the potential transmetalation of the phosphinegold(1) halide with the boronic acid as the initial step in the catalytic cycle. However, the combination of Ph₃PdAuCl and phenylboronic acid in acetonitrile, even after several hours both at room temperature and 60°C, gave no Ph₃PdAuPh as judged by 3¹P NMR spectroscopy.[13] This observation suggests that any transmetalation likely follows oxidation and the or subsequent formation of a Au³= F intermediate, thereby allowing for the favorable formation of a B–F bond.

In examining the mechanism of C–C bond formation, we assessed the possibility of a traditional reductive elimination pathway from a gold(III)–phenyl intermediate, analogous to the related transition-metal-catalyzed oxidative cyclization reactions.[7] Reductive eliminations from gold(III)–alkyl and gold(III)–aryl complexes have been reported, but typically require elevated temperatures,[14] whereas our reaction occurs readily even at room temperature. Furthermore, we found that whilst Ph₃PdAuPh was a competent catalyst for the reaction,[15] treatment of 5a with stoichiometric Ph₃PdAuPh and Selectfluor in the absence of boronic acid led to only trace product formation (Table 4, entry 1). Addition of a phenylborate recovers the reaction, and provides 6 in reasonable yields (Table 4, entry 2). Moreover, the reaction of 5a with different boronic acids and Ph₃PdAuPh produced adducts 25 and 28 derived from transfer from the arylboronic acid and not from the phenylgold species, almost exclusively, regardless of the electronic properties of the boronic acid (Table 4, entries 3 and 4).

These observations suggest that formation of the C–C bond by a reductive elimination from phenylgold(III) intermediate 32 is unlikely, and that, in the case of Ph₃PdAuPh, the
phenyl group acts as a spectator ligand. Therefore, we propose that interaction of the boronic acid with alkylgold(III) fluoride intermediate 31 does not result in transmetalation to 32, but instead induces a bimolecular reductive elimination. In this hypothesis, the B–F interaction is key for the reductive elimination step, as it increases the nucleophilicity of the boronic acid and the electrophilicity of the carbon–gold(III) moiety. Although the formation of the boronate and the subsequent nucleophilic displacement of the gold moiety can occur as separate steps, we envision that the latter is operative, given the SN2-like reaction of the arylboronic acid for the reductive elimination. We envision that the latter is

\[{\text{Ar-B(OH)}_2 + \text{Ph}_3\text{PAuPh} \rightarrow \text{Ar-B(OH)}_2 \text{Ph}_3\text{PAuPh}} \]

(Scheme 1) \[\rightarrow \text{Ar-B(OH)}_2 + \text{Ph}_3\text{PAuPh} \]

(Scheme 1).

The stereochemical course of the gold-catalyzed aminoarylation reaction was probed with deuterium-labeled alkene 34 (Scheme 2). The deuterium-labeled products 35 and 37 are consistent with either anti-aminationation\(^\text{[10]}\) followed by C–C bond formation with stereochemical retention, or initial syn-aminationation\(^\text{[11]}\) with inversion of the stereochemistry during the reductive elimination. We envision that the latter is operative, given the S,N-2-like reaction of the arylboronic acid at the carbon–gold center in transition-state 33.

In conclusion, we have reported a gold-catalyzed aminoarylation reaction of alkenes and arylboronic acids. The reaction is proposed to proceed through a redox cycle involving the initial oxidation of gold(I) into gold(III) with Selectfluor. Ligand and halide effects played a dramatic role in the development of an exceptionally mild catalyst system for the addition to alkene. Finally, although it is tempting to invoke a mechanism for reductive elimination similar to that proposed for other transition-metal complexes, our experimental studies suggest that the C–C bond-forming reaction occurs through a bimolecular reductive elimination. Studies directed towards the application of this catalyst system and reactivity paradigm towards the development of further transformations are underway in our laboratory.

Received: May 6, 2010
Published online: July 2, 2010

Keywords: alkenes · C–C bond formation · cyclization · gold · homogeneous catalysis

\[\text{Ar-B(OH)}_2 + \text{Ph}_3\text{PAuPh} \rightarrow \text{Ar-B(OH)}_2 + \text{Ph}_3\text{PAuPh} \]

(Scheme 1)
Communications

For examples of oxidative transformations catalyzed by [dppm(AuCl)2]-catalyzed reaction produced 2 in only 37% yield. For full details of catalysts examined, see the Supporting Information.

Addition of Selectfluor followed by phenylboronic acid to a solution of [dppm(AuBr)2] led to no appreciable change in the 31P NMR spectrum.

[10] For the halide on catalytic activity is maintained, as the [dppm(AuCl)2]-catalyzed reaction produced 2 in only 37% yield. For full details of catalysts examined, see the Supporting Information.

Ongoing theoretical (DFT) investigations support this type of a nucleophilic reductive elimination pathway. Relaxed coordinate scans suggest a concerted reductive elimination process, in which the B–F bond is formed prior to the C–C bond, thus effectively achieving regeneration of the catalyst and product demetalation. In contrast, we could not find a pathway for transmetalation, in which the phenyl group is transferred onto the gold center, thereby leading to the formation of alkylphenylgold(III) intermediate 32.

For full details and analysis, see the Supporting Information.