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Abstract The molecular features that dominate the

binding mode of agonists by a broadly tuned olfactory

receptor are analyzed through a joint approach combining

cell biology, calcium imaging, and molecular modeling.

The odorant/receptor affinities, estimated through statistics

accrued during molecular dynamics simulations, are in

accordance with the experimental ranking. Although in

many systems receptors recognize their target through a

network of oriented interactions, such as H-bonding, the

binding by broadly tuned olfactory receptors is dominated

by non-polar terms. We show how such a feature allows

chemicals belonging to different chemical families to

similarly activate the receptors through compensations of

interactions within the binding site.

Keywords Molecular dynamics � Free energy �
Odorant � GPCR � Structure

Introduction

Humans are able to perceive odorants through an extraordinary

complex sense. The perception of smell is primarily triggered

by the recognition of one or a mixture of odorants by olfactory

neurons, which house a single type of olfactory receptor (OR)

[1]. The recognition mode of a neuron is then rooted in the way

its associated ORs are activated by a chemical. In ORs, how-

ever, the chemoreception process is far removed from the

classical lock-and-key paradigm, where an odorant, acting as a

key, selectively activates a given type of receptor, functioning

as a lock. Although some ORs are very narrowly tuned for

odorants [2], numerous ORs can be activated by very different

odorants, revealing broad recognition abilities and large plas-

ticity of their binding cavity [3]. This apparent fuzziness is in

fact mandatory, since it allows a combinatorial mode of

odorant recognition, endowing our olfactory system (based on

less than 400 types of olfactory neurons, or receptors) the

ability to recognize an almost infinite number of odorants with

a spectacular discriminatory power.

Ligand-based structure–odor relationships consider that

an odorant structure encompasses all the information needed

to predict its odor. The sense of smell is, however, extraor-

dinarily complex, and many different biological protagonists

are involved during the perception of an odor, suggesting that
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it is virtually impossible to predict an odor based solely on the

odorant’s structure [4, 5]. In addition, ORs are rather tuned to

physico-chemical properties of odorants and not directly to

odors [6], which arises from the neuro-processing of elicited

signals. However, the perception of smell starts by no more

than a series of chemical interactions involving odorants and

ORs located at the neuron–olfactory mucus interface. These

interactions are eventually modulated by peri-receptor

events, such as those played by odorant-binding proteins or

odorant-degrading enzymes. The main step among the series

being the odorant–OR interaction.

Up to now, OR’s broad recognition potencies have been

assessed by means of various experimental approaches, but

atomic-level clues about the way an OR is activated by odor-

ants with different shapes or chemical groups remain scarce.

Human OR1G1 can be regarded as prototypical of broadly

tuned human-ORs. It has already been shown to have a large

recognition spectrum [7], and a structure–odor relationship

emphasized that OR1G1 binds odorants that do not correspond

to the same olfactophores [8]. It remains that the physico-

chemical properties at the binding site, together with the way a

receptor can recognize an odorant of different chemical classes,

still remains poorly understood at the atomic level. To

streamline the binding mode of ORs, we use a combination of

experimental and theoretical work. Various studies have been

devoted to build models of several ORs in interactions with

odorants. They identified the residues that control odorants

recognition by ORs and notably assessed the efficiency of

molecular modeling to predict the structure of ORs, on the basis

of either homology modeling or an ab initio approach [9–19].

To have an odor, a chemical must fulfill some criteria, of

which hydrophobicity stands as a priority. As a consequence,

our sense of smell had to adapt to such a feature by building a

system dedicated to recognize odorants through interactions

and binding modes that remain to be uncovered. In order to

answer the question of how a broadly tuned receptor can

equally recognize agonists belonging to different chemical

classes, we used a joint approach combining cellular biology,

calcium imaging, and state-of-the-art molecular modeling.

We have selected four odorants that were measured to

similarly act as agonists for OR1G1 and compared their

behavior to a known non-activating odorant. We built a full

atomic-detail structure of the receptor and performed

molecular dynamics simulations to analyze the binding

mode on an energetic basis.

Results and discussion

Calcium imaging

The functional expression and the binding tests on

hOR1G1 were assessed through fura-2 fluorescence Ca2?

imaging [20]. Stimulation of an endogenous GPCR by

octopamine has permitted to control the responsiveness of

cells expressing hOR1G1. Surface-receptor expression

kinetics was measured to control that a sufficient number of

receptors are present at the cell surface. This allows thor-

ough statistics (Table 1). Fura-2 fluorescence Ca2?

imaging was then used to measure [Ca2?]intracellular in 72 H

post-infected cells (see Supporting Information).

The calcium imaging experiments are performed for

four odorants (Scheme 1), viz. nonanal (fatty-roselike) (a),

9-decen-1ol (fresh, dewy, rose) (b), camphor (aldehydic,

green, camphor, pine) (c), and 1-nonanol (fresh, clean,

fatty, floral, rose, orange, dusty, wet) (d) [21, 22]. Their

performances are then compared to that of n-butanal, a

non-binder of hOR1G1.

Figure 1 reports the binding of these four odorants with

respect to octopamine, which constitutes a reference for

full activation. All ligands strongly activate the Ca2? dis-

charge, showing that they all act as strong agonists.

The Ca2? concentrations are similar and fall within the

same value if we consider the standard deviation. The

intracellular calcium variation is measured to 27.3, 25.1,

24.4, and 22.6 nM for nonanal, 9-decen-1-ol, 1-nonanol

and camphor, respectively. Counter-intuitively, even if all

odorants bear a *9 carbon atom skeleton, their chemical

nature, size, or shapes do not strongly affect their binding

strength.

Notice that other closely related odorants have been

shown to elicit a much weaker hOR1G1 response.

Expression of OR1G1 in HEK293-derivatives cells

Table 1 hOR1G1 expression kinetics

Time post-infection (h) Amount of cell surface receptors

12 36 (3)

24 60 (4)

72 99.8 (11)

The number of cells is expressed in pmoles/106 cells and the standard

deviation is given in parenthesis

Scheme 1 Chemical structures of nonanal (a), decenol (b), camphor

(c), nonanol (d) and butanal (e)
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allowed performing a screening of many odorants

belonging to different families [7, 8]. This approach is

consistent with ours, regarding the agonist character of our

odorants. In this study, 1-decanol or 1-octanol led to

responses twice weaker than that of 1-nonanol. The same is

true for decanal with respect to nonanal. In the next part of

the article, we compare the behavior of these agonists with

that of n-butanal, which was experimentally shown to elicit

no response of hOR1G1 [8]. All these five systems were

submitted to a multiple molecular modeling protocol. Two

different initial docking poses are subjected to 20-ns

molecular dynamics (MD) to analyze their dynamic

behavior and to obtain a rescored affinity on a statistical

basis.

hOR1G1 structure and binding pocket

To assess the accuracy of the docking protocol, we have

conducted a test on the human beta-2-adrenergic receptor

(pdb id: 2RH1), bound to a good and a weak binder, i.e.,

carazolol and metoprolol, respectively [23]. The docking

protocol recovers the position of carazolol within the cavity

and proposes a pose where the aromatic cycle of meto-

prolol is located in a position equivalent to that of

carazolol. Carazolol is predicted to have a much better

affinity for the receptor (docking score of -9 kcal/mol and

-4.8 kcal/mol for carazolol and metoprolol, respectively).

This justifies the use of a docking protocol to obtain a

starting binding mode. However, in this test set, the

receptor is already pre-organized to bind carazolol, which

is probably not the case for our hOR1G1 model.

Indeed, according to best docking poses, the following

ranking of affinity with hOR11G was obtained: decen-1-

ol [ nonanol [ nonanal [ camphor. All poses had the

hydrophilic part of the odorant directed towards T202. To

refine the scoring function, docking solutions were then

clustered into poses where the hydrophobic part of the

odorant was either directed towards residue T202 or

towards residue T279. The most representative pose in

each cluster was submitted to a 20-ns MD simulation in an

explicit membrane model and the affinity was obtained by

means of the MM-GBSA protocol (see Supp. Info.).

Our approach involves docking on an OR structure. To get

insight into the accuracy of molecular modeling of hOR1G1,

we built the structures by means of two totally different

protocols. In a homology-based approach, hOR1G1 sequence

was aligned following Man et al. protocol [24]. We particu-

larly focused on the alignment of hOR1G1 with various

GPCRs for which structures are either experimentally known

or built on the basis of site-directed mutagenesis (see Supp.

Info.). The alignment predicts TM helices in accordance with

other structures (either experimental or modeled). Fifty

structures were generated by Modeller software on the basis

of the rhodopsin template, since, similarly to ORs, the latter

also exhibits a hydrophobic binding pocket. The final model

was chosen on the basis of two criteria, (i) having a maximum

number of residues in favorable areas of the Ramachandran

plot and (ii) showing a binding site with a maximum of res-

idues found to be important on the basis of site-directed

mutagenesis experiments on other ORs and GPCRs.

An ab initio model of the seven-helix bundle was built

with the MembEnsemb program [25, 26]. This protocol has

already proven successful in the identification of many

GPRCs structures, and more particularly ORs [9, 15, 17,

27].

The seven TM domains of hOR1G1 were predicted by

PredicTM, which combines hydrophobicity analysis and

multiple sequence alignment. All characteristic GPCRs

features are observed. The ab initio structure of the bundle

has the classical interhelical H-bonding networks in TMs

1-2-7 (N 421.50, D 702.50, and N 2867.49), and TMs 2-4 (N

652.45 and W 1494.50) which are found in Rhodopsin family

A GPCRs. The conserved salt-bridge between D 1213.49

and K 2346.30 in the D(E)RY region is recovered. In

addition, in ORs, E 1113.39 and H 2446.40 are highly con-

served (more than 95 %). Our most stable ab initio model

exhibits a hydrogen-bond between these residues, sug-

gesting that they are involved in the structure stability.

The resulting ab initio and homology models look very

similar. hOR1G1 bundle is made up of seven transmem-

brane helices (TM 1–7) that go back and forth the

membrane. A single binding cavity is made up of residues

belonging to helices 3, 5, 6, and 7. Figure 2 compares the

two models, emphasizing the convergence of both

approaches concerning hOR1G1 cavity. Comparing the

bundles, the root mean square deviation is computed to

6.8 Å. This deviation is mainly due to the top and bottom

Fig. 1 Calcium imaging results for the four odorants compared to

octopamine (the standard error is shown as error bars)
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parts of the helices. Focusing on the binding cavity, we

observe the same residues and the RMSd considering only

the binding cavity is 1.6 Å. The convergence of these two

totally different approaches strengthens the accuracy of our

model. This cavity is mainly hydrophobic and matches well

with the ligand hydrophobic property. Figure 3 shows the

molecular hydrophobic potential (MHP) created on cam-

phor surface by either camphor itself, or by the binding

cavity of hOR1G1when camphor is in the best docking

pose (see [28] for a review). This was done with the

PLATINUM program [29]. One can observe a good match

between the hydrophobic property of camphor and the

hydrophobicity of the receptor, at the exception of a small

part of the molecule, notably comprising the oxygen atom.

This also suggests that the hydrophilic part of the ligand is

not driving the position of the latter in the binding pocket.

The residues constituting the cavity wall are as follows:

F104, M105, V108, T202, T206, F256, F260, and T279.

Interestingly, in other OR or GPCR sequences, identical

positions have been shown to strongly contribute to ligand

recognition. This is notably the case for residues 104–105,

which are found to be involved in several odorants’ rec-

ognition by hOR2AG1 and mOR283-2 [16], rOR5 [10],

hOR1D2 [18], hOR1A2 [12], and mOR-EG [14, 19] for

example. Residues in positions close to 206, 256, 260, and

more particularly 279, have also been shown to be involved

in binding in these human or rat ORs (hOR2AG1, rOR5).

Residue T279 was shown to belong to the binding cavity of

hOR2AG1 [16]. It is conserved in hOR1G1 and is located

at the same place in the 3D structures (see Supp Info.).

The odorants were docked into the binding cavity of the

homology model. For each odorant, a starting structure

corresponding to the best docking pose is compared to an

alternative pose where the hydrophilic part of the odorant is

directed towards T279, since this residue was previously

identified as crucial for hOR2AG1 activation [16].

The systems were embedded into a model membrane

prior to two 20-ns molecular dynamics simulation that

allowed relaxing the structures. A large statistical sampling

of the odorant/OR interactions could thus be obtained.

Non-polar terms dominate binding

For the five odorant/receptor systems, the OR structure

remains stable throughout the simulation (see Supp. Info.).

For each odorant, two simulations have been performed.

The only difference being the initial position of the ligand

within the cavity. This rescoring protocol has allowed us to

obtain two estimations of the binding energy, associated

with two distinct odorant poses. We nonetheless observe

large reorganization of the odorants within the cavity. Each

simulation samples ligand orientations that are common in

both models, emphasizing the large mobility of ligands

when they are stabilized by hydrophobic contacts rather

than by directional hydrogen bonds. Such behavior has

Fig. 2 Left: superposition of two models of hOR1G1 bundle. The

homology model is shown in black and the ab initio model is in white.

Right: position of residues lining the binding site within the two

models (H atoms are omitted)

Fig. 3 Complementarity of hydrophobic properties of camphor and

hOR1G1-binding site. Left: molecular hydrophobicity potential

(MHP) created by the ligands atoms on its own surface. Middle:

MHP created by the receptor atoms on the ligand surface (which is the

same). Right: match/mismatch between left and middle

L. Charlier et al.
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already been shown on odorant-binding protein complexes,

where odorants sample a large conformational space within

the hydrophobic binding cavity [30, 31].

To assess the model quality, docking scores are evalu-

ated by an estimation of a component of the binding free

energy, computed through a molecular mechanics-gen-

eralized born solvent accessibility (MM-GBSA) protocol

[32]. For each simulation, the pose corresponding to the

largest affinity is used for further analysis. The binding free

energy estimations (DGMM-GBSA
Total) gathered in Table 2

are very similar numbers concerning the agonists. More

importantly, they follow the trend observed experimen-

tally, except for camphor, which is predicted to bind a bit

more tightly than nonanol. This emphasizes that taking into

account for dynamical effects and using a quite-elaborated

free-energy estimation is able to propose an accurate model

of OR/odorants affinity. For the agonists, the four values

spread within a 3-kcal/mol range. This corresponds to their

typical standard deviation. Butanal binds less tightly to the

receptor, with an affinity more than twice as weak as those

of the agonists. As for the Ca2? imaging experiments on

agonists, the affinities fall within the same range, sug-

gesting that the model has accurately captured the physics

of the system at the receptor–odorant-binding site and that

these agonists are indeed strongly bound to the receptor,

contrarily to butanal.

The binding free energy can be decomposed into polar

and non-polar terms. In these systems, the interaction

energy is driven by the hydrophobic term. The polar term

represents a third of the total binding energy for decenol

(32 %) and nonanol (29 %), respectively. For camphor and

nonanal, this contribution decreases to 13 and 16 %,

respectively, which corresponds to a weight of *85 % for

the non-polar term. For butanal, the energetics of binding is

more balanced between hydrophilic and hydrophobic

contributions. The polar term accounts for 41 % of the free

energy of binding. In the agonists, most of the interactions

indeed occur through hydrophobic contacts with non-polar

residues of the binding cavity (vide infra). These

hydrophobic contacts are not directional (contrarily to

H-bonds) and allow a reorganization of the ligand within

the receptor’s cavity with respect to its initial position.

The binding mode differs from one odorant to another

The identification of the binding mode, i.e., the interaction

between the cavity and the odorants, is analyzed through

the MM-GBSA protocol that allows decomposing the

binding free energy on a per-residue basis (Fig. 4).

It provides a general view of the binding that takes into

account for the interactions sampled during the whole MD

simulations. It is more instructive than a classical geo-

metrical analysis.

Most of the binding contributions lie between 0 and

-2 kcal/mol. Although many zones in the sequence are

equally involved in the binding, many other residues

exhibit a strong contribution for a given ligand but a

weaker one for another ligand, illustrating the difference of

binding mode.

From a general point of view, the analysis recovers the

typical parts of GPCRs known to form the binding cavity.

Some residues are involved in binding, whatever the

ligand, and constitute the main building blocks of the

OR1G1 odorant-binding cavity.

These residues are all hydrophobic (F104, M105, F168,

I181, and F260), except T202 or T279, which can be

engaged in a hydrogen bond with the odorants, as shown in

Fig. 5.

Then, depending on the odorant’s chemical nature and

shape, the binding is strengthened by other residues. A

multimodal way of binding is observed.

Table 2 MM-GBSA free energy of binding and decomposition into

polar and non-polar terms

Odorant DGMM-GBSA

polar

DGMM-GBSA

non-polar

DGMM-GBSA

Total

1-Nonanal 4.6 -33.3 -28.7 (2.0)

9-Decen-1-ol 7.8 -33.3 -25.5 (2.0)

1-Nonanol 7.6 -34.0 -26.4 (2.0)

Camphor 3.6 -30.7 -27.1 (2.0)

Butanal 4.4 -15.1 -10.7 (2.5)

Values are in kcal/mol. Standard deviations are shown in parenthesis

Fig. 4 Decomposition of the free energy of binding on a per-residue

basis
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Nonanal interacts quite strongly with F260 at the end of

helix 6, I181 in the extra-cellular Loop 2 (ECL2) and F104

and V108 (helix 3). All of these interactions involve

hydrophobic contacts, suggesting that the binding is mainly

enslaved to non-polar terms.

The double bond of 9-decen-1-ol strongly interacts with

F260. The p-staking interaction with the aromatic cycle of

F260 dominates the binding mode, leading to a slight shift

of decen-1-ol far from residues belonging to helix 3,

notably V108. T202 and I199 are engaged in a hydrogen

bond with the odorant’s alcohol moiety. The contribution

of T279 is deemed negligible, and that of I181 is twice

weaker than that of nonanal and camphor.

The binding mode of nonanol is regularly spread over

many parts of the binding pocket. It nonetheless mostly

involves hydrophobic contacts of the odorant aliphatic side

chain with V108, F256, and F260. Compared to decenol,

the lack of a double bond in the aliphatic part spreads the

decomposition over a larger number of residues, more

particularly those belonging to helix 7, such as T279.

For camphor, a large part of the binding comes from the

contribution of I181 and from residues of helix 3 (F104,

M105, and V108). T279 is involved in binding via

hydrophilic interactions but the odorant is mostly

recognized through non-polar contacts with residues

belonging to helix 3. Contributions of helices 5, 6, and 7

are weaker than those found for the other agonists. Butanal

binding is very poor. The pattern is similar to nonanol, but

with much weaker binding. The largest part of the inter-

action energy comes from F260, but the other ones are

negligible with respect to those found in the other systems.

An adaptation of the cavity to the odorant is observed.

The classical paradigm would rather consider a model

where odorants interact with a hydrogen-bond anchoring

point (T202) with the remainder of the binding pocket

serving as a hydrophobic space where the ligand must fit.

Here, this model is somehow called into question. Both the

odorant and the cavity undergo conformational fitting.

At the cavity, we observe conformational changes of res-

idues side chains, which affect the binding cavity volume.

Counter-intuitively, the cavity volume evolution within the

series is not correlated to the odorant molecular volume. In

the docked conformation, the ligands volumes are as follows:

decenol [ nonanol [ nonanal [ camphor [ butanal, as

shown in Table 3. The binding cavity is very plastic and

breathes around different volumes depending on the bound

odorant. Evolutions of the cavity volume all along the MD

simulations are provided in the Supp. Info.

Fig. 5 Close-up view of the odorants’ positions within hOR1G1-binding cavity. The atomic representation is as follows: ligands in balls and
stick, binding cavity residues in licorice. C cyan, O red, N blue, S yellow
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In the cases of camphor and nonanal, one observes much

smaller variations of the volume, revealing a larger

hydrophobic collapse of the binding pocket. In a general

manner, for all the odorants, the cavity adapts to the

odorant’s shape. In the butanal complex, residues of the

binding pocket fill the cavity through a large hydrophobic

collapse. The filling of the cavity is notably due to F256

and F260 side chains, which enter deep inside the cavity, as

shown in Fig. 5. The case of butanal is a clear example of

the plasticity and adaptability of the binding pocket.

A model for recognition of broadly tuned

olfactory receptors

The sense of smell allows us to perceive volatile chemicals

present in our environment. The almost infinite number of

odorant molecules has to be accurately qualified and

quantified. To this end, our sense of smell has to adapt to

such a difficult task with a recognition paradigm that dif-

fers from the classical ones found in pharmacologically

relevant systems. We perceive odors through a combina-

torial code involving less than 400 receptors. Then, many

of our receptors are broadly tuned and do not only respond

to well-defined chemical classes. These so-called broadly

tuned receptors use a recognition mode that differs from

those encountered in more specific systems. hOR1G1 was

considered as a model for such ORs.

The binding feature of this broadly tuned OR is typical

of an opportunistic mode of binding. Hydrogen bonds’ role

is deemed rather minor (although it is probably mandatory

for receptor’s activation [16]) and the binding is dominated

by hydrophobic contacts. The lack of an H-bonded inter-

action hampers any directionality in the binding and the

cavity adapts to the odorant’s shape. Such a mode of

interaction is well known through another protein involved

in the perception of smell: the odorant-binding protein. In

OBPs, the odorant is stabilized through a network of

hydrophobic contacts within a solvent-occluded cavity [30,

31, 33]. Also, in some X-ray structures, two identical

odorants can adopt alternative poses within the same

binding cavity [33]. Here again, its shows how the olfac-

tory systems have to adapt to the almost infinite number of

odorant chemicals belonging to all families. Notice also

that the concept of multiple binding mode leading to a

GPCR activation has already been put forward [34].

Broadly tuned ORs combine these two features, with a

domination of hydrophobic contacts that favor multiple

binding modes through opportunistic interactions.

This domination of the binding by non-polar contacts

endows the OR a spectacular adaptability, likely to bind

several type of odorants with equivalent affinities. It is

nonetheless also able to discriminate between very closely

related odorants, as shown on ORI7 for example [13, 35].

Plasticity, together with the lack of a ‘‘same struc-

ture ? same function’’ paradigm in broadly tuned OR

allows us to perceive tens of thousands odors with less than

400 functional receptors. The sense of smell is indeed

known to be the most difficult sense to decipher. This is

mostly because of the combinatorial code that governs an

odorant’s chemoreception. We show here that this com-

plexity projects into the binding mode of ORs at the atomic

level. A multimodal way of binding appears to be the main

characteristic that makes some ORs so broadly tuned, as

shown in Fig. 5, where one can observe a very different

orientation of the residues belonging to the cavity. The

plasticity of the binding cavity allows different ligands to

interact optimally with various residues. ORs are indeed

likely to adapt to an odorant’s structure and chemical

family. The control of the binding mode by non-polar

interactions leads to an equivalent OR activation by an

aldehyde (nonanal) and its associated alcohol function

(nonanol), since the hydrophilic functional group poorly

governs binding. The addition of a methyl group that would

decrease the affinity in the alcohol family (nona-

nol ? decanol, see [7]) is compensated by a double bond

(9-decen-1-ol) that interacts with a phenylalanine residue.

These aliphatic skeletons can equivalently be replaced by

the presence of a bulky group (camphor) bound through

shape complementarities with the cavity, still via non-polar

contacts. On the contrary, non-activating ligands do not

fulfill such hydrophobic interactions, due to a smaller

carbon skeleton, as observed with butanal. In this case, the

ligand weakly binds to the receptor and no particular res-

idue can be considered as highly involved in binding.

State-of-the-art molecular modeling approaches appear

likely to predict the affinity of an odorant towards ORs.

The agonist or antagonist character remains, however, a

hard task to predict. Studies are on the way to get insight

into GPCRs’ activation, although they require very massive

computer power [36]. They are nevertheless far from being

used daily as standard approaches, justifying the use of

joint studies, where the agonist potency is experimentally

addressed and the binding mode is analyzed by means of

molecular modeling.

Note added in proof A recent article reports a model of hOR1G1

[37]. Their model and our both put forward equivalent residues for the

Table 3 Volume of the odorants and of hOR1G1-binding cavity with

the root mean square within parenthesis (in Å3)

Ligand Nonanal Decen-1-ol Nonanol Camphor Butanal

Ligand volume 297 331 317 272 72

Cavity volume 325 (43) 458 (90) 579 (72) 424 (52) 189 (91)
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binding cavity. For example, their bound structure of 1-nonanol

corresponds to one of our initial structures.
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